# MolGen MolGen was introduced in the paper ["Molecular Language Model as Multi-task Generator"](https://arxiv.org/pdf/2301.11259.pdf) and first released in [this repository](https://github.com/zjunlp/MolGen). It is a pre-trained molecular generative model built using the 100\% robust molecular language representation, SELFIES. ## Model description MolGen is the first pre-trained model that only produces chemically valid molecules. With a training corpus of over 100 million molecules in SELFIES representation, MolGen learns the intrinsic structural patterns of molecules by mapping corrupted SELFIES to their original forms. Specifically, MolGen employs a bidirectional Transformer as its encoder and an autoregressive Transformer as its decoder. Through its carefully designed multi-task prefix tuning (MPT), MolGen can generate molecules with desired properties, making it a valuable tool for molecular optimization. ### BibTeX entry and citation info ```bibtex @article{fang2023molecular, title={Molecular Language Model as Multi-task Generator}, author={Fang, Yin and Zhang, Ningyu and Chen, Zhuo and Fan, Xiaohui and Chen, Huajun}, journal={arXiv preprint arXiv:2301.11259}, year={2023} } ```