import os import shutil from tqdm import tqdm import cv2 import numpy as np # 对mask进行膨胀 root_folder = '../data/video_dataset/YoutubeVOS/train' mask_folder = os.path.join(root_folder,'mask') mask_dilate_folder = os.path.join(root_folder,'mask_dilate') os.makedirs(mask_dilate_folder,exist_ok=True) # m_1 = len(os.listdir(mask_folder)) # m_2 = len(os.listdir(mask_dilate_folder)) # print(m_1,m_2) # exit(0) vid_list = os.listdir(mask_folder) pbar = tqdm(enumerate(vid_list),total=len(vid_list)) for i, vid_name in pbar: # folder_path = '/mnt/workspace/workgroup/sihui.jsh/layer_diff_dataset/YoutubeVOS/mask/0043f083b5' folder_path = os.path.join(mask_folder,vid_name) # folder_path = '/mnt/workspace/workgroup/sihui.jsh/layer_diff_dataset/YoutubeVOS/mask/0043f083b5' folder_path_ = os.path.join(mask_dilate_folder,vid_name) os.makedirs(folder_path_,exist_ok=True) file_list = os.listdir(folder_path) file_list = [i for i in file_list if i.endswith('.png')] file_list.sort() # pbar = tqdm(enumerate(file_list),total=len(file_list)) for i, image_name in enumerate(file_list): gt = cv2.imread(os.path.join(folder_path,image_name),cv2.IMREAD_GRAYSCALE) # gt = cv2.resize(gt,(512,512)) kernel = np.ones((40, 40), np.uint8) gt = cv2.dilate(gt,kernel,20) gt = gt.clip(0, 255).round().astype('uint8') cv2.imwrite(os.path.join(folder_path_,image_name),gt) # exit()