import logging import os from collections import OrderedDict import pycocotools.mask as maskUtils import mmengine import torch from mmengine import print_log import numpy as np from mmengine.dist import master_only from xtuner.registry import BUILDER from vlm.datasets.evaluation.base_eval_dataset import BaseEvalDataset from vlm.utils import VideoReader from .encode_fn import video_lisa_encode_multi_conv_fn import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode, to_pil_image SEG_QUESTIONS = [ "Can you segment the {class_name} in this image?", "Please segment {class_name} in this image.", "What is {class_name} in this image? Please respond with segmentation mask.", "What is {class_name} in this image? Please output segmentation mask.", "Can you segment the {class_name} in this image", "Please segment {class_name} in this image", "What is {class_name} in this image? Please respond with segmentation mask", "What is {class_name} in this image? Please output segmentation mask", "Could you provide a segmentation mask for the {class_name} in this image?", "Please identify and segment the {class_name} in this image.", "Where is the {class_name} in this picture? Please respond with a segmentation mask.", "Can you highlight the {class_name} in this image with a segmentation mask?", "Could you provide a segmentation mask for the {class_name} in this image", "Please identify and segment the {class_name} in this image", "Where is the {class_name} in this picture? Please respond with a segmentation mask", "Can you highlight the {class_name} in this image with a segmentation mask", ] ANSWER_LIST = [ "It is [SEG].", "Sure, [SEG].", "Sure, it is [SEG].", "Sure, the segmentation result is [SEG].", "[SEG].", ] def decode_masklet(masklet): masks = [] for _rle in masklet: mask = maskUtils.decode(_rle) masks.append(mask) return masks def multi_template_fn(conversations, template_map): for conv in conversations: for i, single_turn_conversation in enumerate(conv): input = single_turn_conversation.get('input', '') if input is None: input = '' input_text = template_map.INSTRUCTION.format(input=input, round=i + 1) system = single_turn_conversation.get('system', '') if system != '' and system is not None: system = template_map.SYSTEM.format(system=system) input_text = system + input_text single_turn_conversation['input'] = input_text if template_map.get('SUFFIX', None): output_text = single_turn_conversation.get('output', '') output_text += template_map.SUFFIX single_turn_conversation['output'] = output_text # SUFFIX_AS_EOS is False ==> need_eos_token is True single_turn_conversation['need_eos_token'] = \ not template_map.get('SUFFIX_AS_EOS', False) single_turn_conversation['sep'] = template_map.get('SEP', '') class VideoCustomDataset(BaseEvalDataset): IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) IMG_CONTEXT_TOKEN = '' IMG_START_TOKEN = '' IMG_END_TOKEN = '' FAST_IMG_CONTEXT_TOKEN = '' FAST_IMG_START_TOKEN = '' FAST_IMG_END_TOKEN = '' METAINFO: dict = dict(name='custom') def __init__(self, image_folder, expression_file, extra_image_processor=None, tokenizer=None, offline_processed_text_folder=None, template_map_fn=None, max_length=2048, lazy=True, special_tokens=None, # eval settings num_frames=5, # eval name eval_name=None, # fast cfg use_fast=False, fast_pool_size=2, n_fast_images=50, fast_token_after_question=False, ): super().__init__() # check the config assert lazy is True self.tokenizer = BUILDER.build(tokenizer) self.lazy = lazy self.max_length = max_length self.template_map = template_map_fn['template'] if offline_processed_text_folder and expression_file: print_log( 'Both `offline_processed_text_folder` and ' '`data_path` are set, and we load dataset from' '`offline_processed_text_folder` ' f'({offline_processed_text_folder})', logger='current', level=logging.WARNING) if offline_processed_text_folder is not None: raise NotImplementedError else: exp_json_file = mmengine.load(expression_file) vid_names = mmengine.list_dir_or_file(image_folder, list_dir=False, suffix='mp4') vid_tags = list(map(lambda x: x.split('.')[0], vid_names)) json_data = OrderedDict() for vid_tag in vid_tags: assert vid_tag not in json_data if not vid_tag in exp_json_file: continue exp_json_current = exp_json_file[vid_tag] json_data[vid_tag] = { 'video_id': vid_tag, 'video_path': os.path.join(image_folder, f"{vid_tag}.mp4"), 'anno_path': os.path.join(image_folder, f"{vid_tag}_manual.json"), 'objects': exp_json_current['objects'], } self.data_infos = json_data self.index2key = list(self.data_infos.keys()) self.image_folder = image_folder if extra_image_processor is not None: self.extra_image_processor = BUILDER.build(extra_image_processor) self._system = '' self.downsample_ratio = 0.5 self.image_size = 448 patch_size = 14 self.patch_token = int((self.image_size // patch_size) ** 2 * (self.downsample_ratio ** 2)) self.transformer = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((self.image_size, self.image_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=self.IMAGENET_MEAN, std=self.IMAGENET_STD) ]) if special_tokens is not None: self.tokenizer.add_tokens(special_tokens, special_tokens=True) self.num_frames = num_frames self.use_fast = use_fast self.fast_pool_size = fast_pool_size self.fast_token_after_question = fast_token_after_question self.n_fast_images = n_fast_images # Dummy # save to json if eval_name is None: eval_name = 'results' self.eval_name = eval_name # vid self.vid_interval = 4 def __len__(self): return len(self.data_infos) @property def modality_length(self): length_list = [] for data_dict in self.data_infos: cur_len = 10000 length_list.append(cur_len) return length_list def dataset_map_fn(self, text_prompts, num_frames, num_fast_frames=0): text_dict = self.prepare_text(num_frames, text_prompts, num_image_tokens=self.patch_token, num_fast_frames=num_fast_frames) ret = {'conversation': text_dict['conversation']} return ret def prepare_text(self, n_frames, expressions, num_image_tokens=256, num_fast_frames=0): if self.use_fast and not self.fast_token_after_question: fast_frame_token_str = f'{self.FAST_IMG_START_TOKEN}' \ f'{self.FAST_IMG_CONTEXT_TOKEN * num_fast_frames * self.fast_pool_size * self.fast_pool_size}' \ f'{self.FAST_IMG_END_TOKEN}' + '\n' else: fast_frame_token_str = '' frame_token_str = f'{self.IMG_START_TOKEN}' \ f'{self.IMG_CONTEXT_TOKEN * num_image_tokens}' \ f'{self.IMG_END_TOKEN}' if self.fast_token_after_question: assert self.use_fast after_question_str = f'{self.FAST_IMG_START_TOKEN}' \ f'{self.FAST_IMG_CONTEXT_TOKEN * num_fast_frames * self.fast_pool_size * self.fast_pool_size}' \ f'{self.FAST_IMG_END_TOKEN}' else: after_question_str = '' questions = [] for i, exp in enumerate(expressions): # the exp is a question if '?' in exp: questions.append(exp) else: exp = exp.replace('.', '').strip() # EVAL: Use the first question all the time. # question_template = random.choice(SEG_QUESTIONS) question_template = SEG_QUESTIONS[0] questions.append(question_template.format(class_name=exp.lower())) eval_conversation_list = [] for i, question in enumerate(questions): qa_list = [] frame_tokens = frame_token_str + '\n' frame_tokens = frame_tokens * n_frames frame_tokens = frame_tokens.strip() qa_list.append( {'from': 'human', 'value': fast_frame_token_str + frame_tokens + question + after_question_str} ) qa_list.append( {'from': 'gpt', 'value': ''} ) assert len(qa_list) == 2 input = '' conversation = [] for msg in qa_list: if msg['from'] == 'human': input += msg['value'] elif msg['from'] == 'gpt': if msg['value'] == '': conversation.append({'input': input,}) else: conversation.append({'input': input, 'output': msg['value']}) input = '' else: raise NotImplementedError # add system information conversation[0].update({'system': self._system}) eval_conversation_list.append(conversation) return {'conversation': eval_conversation_list} def __getitem__(self, index): data_info = self.data_infos[self.index2key[index]] obj_ids = data_info['objects'].keys() video_path = data_info['video_path'] vid_frames = VideoReader(video_path)[::self.vid_interval] mask_json_file = data_info['anno_path'] if os.path.exists(mask_json_file): mask_data = mmengine.load(mask_json_file) else: mask_data = None gt_masks = [] text_prompts = [] for obj_id in obj_ids: # obj_id_int = int(obj_id) # mask_ind = mask_data['masklet_id'].index(obj_id_int) # masks = decode_masklet([_[mask_ind] for _ in mask_data['masklet']]) text_prompt = data_info['objects'][obj_id]['exp'] # gt_masks.append(masks) text_prompts.append(text_prompt) data_dict = self.dataset_map_fn(text_prompts, self.num_frames, num_fast_frames=len(vid_frames)) multi_template_fn(data_dict['conversation'], self.template_map) result = video_lisa_encode_multi_conv_fn(data_dict, input_ids_with_output=False, tokenizer=self.tokenizer, max_length=self.max_length) data_dict.update(result) pixel_values = [] extra_pixel_values = [] if self.use_fast: fast_pixel_values = [] ori_width, ori_height = None, None for frame_idx, frame_image in enumerate(vid_frames): if ori_height is None: ori_height, ori_width = frame_image.shape[0], frame_image.shape[1] else: assert ori_height == frame_image.shape[0] assert ori_width == frame_image.shape[1] frame_image = frame_image[..., ::-1] # BGR (opencv system) to RGB (numpy system) if self.extra_image_processor is not None: g_image = np.array(frame_image) # for grounding g_image = self.extra_image_processor.apply_image(g_image) g_pixel_values = torch.from_numpy(g_image).permute(2, 0, 1).contiguous() extra_pixel_values.append(g_pixel_values) if self.use_fast: img = to_pil_image(frame_image, mode='RGB') img = self.transformer(img) fast_pixel_values.append(img) if frame_idx < self.num_frames: img = to_pil_image(frame_image, mode='RGB') img = self.transformer(img) pixel_values.append(img) pixel_values = torch.stack(pixel_values, dim=0) # (n_f, 3, h, w) data_dict['pixel_values'] = pixel_values if self.use_fast: fast_pixel_values = torch.stack(fast_pixel_values, dim=0) # (n_f, 3, h, w) data_dict['fast_pixel_values'] = fast_pixel_values if self.extra_image_processor is not None: data_dict['g_pixel_values'] = extra_pixel_values data_dict['type'] = 'video' data_dict['video_id'] = index data_dict['text_prompts'] = text_prompts data_dict['image_folder'] = self.image_folder data_dict['ori_height'] = ori_height data_dict['ori_width'] = ori_width data_dict['video_path'] = video_path return data_dict @master_only def evaluate(self, results, work_dir): return {"Dummy": 0}