# Copyright 2022 Garena Online Private Limited # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Misc functions. Mostly copy-paste from torchvision references or other public repos like DETR and DINO: https://github.com/facebookresearch/detr/blob/master/util/misc.py https://github.com/facebookresearch/dino/blob/main/utils.py """ import datetime import logging import os import subprocess import sys import time from collections import defaultdict, deque import numpy as np import torch import torch.distributed as dist from torch import nn def get_logger(file_path_name): """ build a logger which both write on the desk and also on the terminal """ logger = logging.getLogger() logger.setLevel("INFO") BASIC_FORMAT = "%(levelname)s:%(message)s" DATE_FORMAT = "" formatter = logging.Formatter(BASIC_FORMAT, DATE_FORMAT) chlr = logging.StreamHandler() chlr.setFormatter(formatter) chlr.setLevel("INFO") fhlr = logging.FileHandler(file_path_name) fhlr.setFormatter(formatter) logger.addHandler(chlr) logger.addHandler(fhlr) return logger def restart_from_checkpoint(ckp_path, run_variables=None, **kwargs): """ Re-start from checkpoint """ if not os.path.isfile(ckp_path): return print("Found checkpoint at {}".format(ckp_path)) # open checkpoint file checkpoint = torch.load(ckp_path, map_location="cpu") # key is what to look for in the checkpoint file # value is the object to load # example: {'state_dict': model} for key, value in kwargs.items(): if key in checkpoint and value is not None: try: msg = value.load_state_dict(checkpoint[key], strict=False) print( "=> loaded '{}' from checkpoint '{}' with msg {}".format( key, ckp_path, msg ) ) except TypeError: try: msg = value.load_state_dict(checkpoint[key]) print("=> loaded '{}' from checkpoint: '{}'".format(key, ckp_path)) except ValueError: print( "=> failed to load '{}' from checkpoint: '{}'".format( key, ckp_path ) ) else: print("=> key '{}' not found in checkpoint: '{}'".format(key, ckp_path)) # reload variable important for the run if run_variables is not None: for var_name in run_variables: if var_name in checkpoint: run_variables[var_name] = checkpoint[var_name] def bool_flag(s): """ Parse boolean arguments from the command line. """ FALSY_STRINGS = {"off", "false", "0"} TRUTHY_STRINGS = {"on", "true", "1"} if s.lower() in FALSY_STRINGS: return False elif s.lower() in TRUTHY_STRINGS: return True else: raise argparse.ArgumentTypeError("invalid value for a boolean flag") def fix_random_seeds(seed=31): """ Fix random seeds. """ torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) def has_batchnorms(model): """ judge whether a model has batch normalization """ bn_types = (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d, nn.SyncBatchNorm) for name, module in model.named_modules(): if isinstance(module, bn_types): return True return False class SmoothedValue(object): """Track a series of values and provide access to smoothed values over a window or the global series average. """ def __init__(self, window_size=20, fmt=None): if fmt is None: fmt = "{median:.6f} ({global_avg:.6f})" self.deque = deque(maxlen=window_size) self.total = 0.0 self.count = 0 self.fmt = fmt def update(self, value, n=1): self.deque.append(value) self.count += n self.total += value * n def synchronize_between_processes(self): """ Warning: does not synchronize the deque! """ if not is_dist_avail_and_initialized(): return t = torch.tensor([self.count, self.total], dtype=torch.float64, device="cuda") dist.barrier() dist.all_reduce(t) t = t.tolist() self.count = int(t[0]) self.total = t[1] @property def median(self): d = torch.tensor(list(self.deque)) return d.median().item() @property def avg(self): d = torch.tensor(list(self.deque), dtype=torch.float32) return d.mean().item() @property def global_avg(self): return self.total / self.count @property def max(self): return max(self.deque) @property def value(self): return self.deque[-1] def __str__(self): return self.fmt.format( median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value, ) class MetricLogger(object): """ build a Metric Logger """ def __init__(self, delimiter="\t"): self.meters = defaultdict(SmoothedValue) self.delimiter = delimiter def update(self, **kwargs): for k, v in kwargs.items(): if isinstance(v, torch.Tensor): v = v.item() assert isinstance(v, (float, int)) self.meters[k].update(v) def __getattr__(self, attr): if attr in self.meters: return self.meters[attr] if attr in self.__dict__: return self.__dict__[attr] raise AttributeError( "'{}' object has no attribute '{}'".format(type(self).__name__, attr) ) def __str__(self): loss_str = [] for name, meter in self.meters.items(): loss_str.append("{}: {}".format(name, str(meter))) return self.delimiter.join(loss_str) def synchronize_between_processes(self): for meter in self.meters.values(): meter.synchronize_between_processes() def add_meter(self, name, meter): self.meters[name] = meter def log_every(self, iterable, print_freq, header=None): i = 0 if not header: header = "" start_time = time.time() end = time.time() iter_time = SmoothedValue(fmt="{avg:.6f}") data_time = SmoothedValue(fmt="{avg:.6f}") space_fmt = ":" + str(len(str(len(iterable)))) + "d" if torch.cuda.is_available(): log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", "max mem: {memory:.0f}", ] ) else: log_msg = self.delimiter.join( [ header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}", ] ) MB = 1024.0 * 1024.0 for obj in iterable: data_time.update(time.time() - end) yield obj iter_time.update(time.time() - end) if i % print_freq == 0 or i == len(iterable) - 1: eta_seconds = iter_time.global_avg * (len(iterable) - i) eta_string = str(datetime.timedelta(seconds=int(eta_seconds))) if torch.cuda.is_available(): print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), memory=torch.cuda.max_memory_allocated() / MB, ) ) else: print( log_msg.format( i, len(iterable), eta=eta_string, meters=str(self), time=str(iter_time), data=str(data_time), ) ) i += 1 end = time.time() total_time = time.time() - start_time total_time_str = str(datetime.timedelta(seconds=int(total_time))) print( "{} Total time: {} ({:.6f} s / it)".format( header, total_time_str, total_time / len(iterable) ) ) def get_sha(): cwd = os.path.dirname(os.path.abspath(__file__)) def _run(command): return subprocess.check_output(command, cwd=cwd).decode("ascii").strip() sha = "N/A" diff = "clean" branch = "N/A" try: sha = _run(["git", "rev-parse", "HEAD"]) subprocess.check_output(["git", "diff"], cwd=cwd) diff = _run(["git", "diff-index", "HEAD"]) diff = "has uncommited changes" if diff else "clean" branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"]) except Exception: pass message = f"sha: {sha}, status: {diff}, branch: {branch}" return message def is_dist_avail_and_initialized(): """ judge whether distributed training is available and well-initialized """ if not dist.is_available(): return False if not dist.is_initialized(): return False return True def get_world_size(): """ get the world size """ if not is_dist_avail_and_initialized(): return 1 return dist.get_world_size() def get_rank(): """ get the rank """ if not is_dist_avail_and_initialized(): return 0 return dist.get_rank() def is_main_process(): """ judge whether the current node is the master node """ return get_rank() == 0 def save_on_master(*args, **kwargs): """ save checkpoint on the master node """ if is_main_process(): torch.save(*args, **kwargs) def setup_for_distributed(is_master): """ This function disables printing when not in master process """ import builtins as __builtin__ builtin_print = __builtin__.print def print(*args, **kwargs): force = kwargs.pop("force", False) if is_master or force: builtin_print(*args, **kwargs) __builtin__.print = print def init_distributed_ddpjob(args=None): """ initialize the ddp job """ if dist.is_available() and dist.is_initialized(): return dist.get_world_size(), dist.get_rank() try: os.environ["MASTER_PORT"] = "40101" torch.distributed.init_process_group(backend="nccl") except Exception: world_size, rank = 1, 0 print("distributed training not available") world_size = dist.get_world_size() rank = dist.get_rank() args.gpu = args.rank args.world_size, args.rank = world_size, rank return world_size, rank def init_distributed_mode(args): """ initialize the normal job """ # launched with torch.distributed.launch if "RANK" in os.environ and "WORLD_SIZE" in os.environ: args.rank = int(os.environ["RANK"]) args.world_size = int(os.environ["WORLD_SIZE"]) args.gpu = int(os.environ.get("LOCAL_RANK", 0)) print( "args.rank", args.rank, "args.world_size", args.world_size, "args.gpu", args.gpu, ) print("get_rank()", get_rank()) # launched with submitit on a slurm cluster elif "SLURM_PROCID" in os.environ: args.rank = int(os.environ["SLURM_PROCID"]) args.gpu = args.rank % torch.cuda.device_count() # launched naively with `python main_dino.py` # we manually add MASTER_ADDR and MASTER_PORT to env variables elif torch.cuda.is_available(): print("Will run the code on one GPU.") args.rank, args.gpu, args.world_size = 0, 0, 1 os.environ["MASTER_ADDR"] = "127.0.0.1" os.environ["MASTER_PORT"] = "2950" else: print("Does not support training without GPU.") sys.exit(1) os.environ["MASTER_PORT"] = "6542" dist.init_process_group( backend="nccl", init_method=args.dist_url, world_size=args.world_size, rank=args.rank, ) torch.cuda.set_device(args.gpu) print( "| distributed init (rank {}): {}".format(args.rank, args.dist_url), flush=True ) dist.barrier() setup_for_distributed(args.rank == 0) def accuracy(output, target, topk=(1,)): """ Computes the accuracy over the k top predictions for the specified values of k """ maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.reshape(1, -1).expand_as(pred)) return [correct[:k].reshape(-1).float().sum(0) * 100.0 / batch_size for k in topk] def multi_scale(samples, model): """ build a multi-scale features """ v = None for s in [1, 1 / 2 ** (1 / 2), 1 / 2]: # we use 3 different scales if s == 1: inp = samples.clone() else: inp = nn.functional.interpolate( samples, scale_factor=s, mode="bilinear", align_corners=False ) feats = model.forward_knn(inp).clone() if v is None: v = feats else: v += feats v /= 3 v /= v.norm() return v class AllGather(torch.autograd.Function): """ gather the variable on different nodes toghther """ @staticmethod def forward(ctx, x): if ( dist.is_available() and dist.is_initialized() and (dist.get_world_size() > 1) ): outputs = [torch.zeros_like(x) for _ in range(dist.get_world_size())] dist.all_gather(outputs, x) return torch.cat(outputs, 0) return x @staticmethod def backward(ctx, grads): if ( dist.is_available() and dist.is_initialized() and (dist.get_world_size() > 1) ): s = (grads.shape[0] // dist.get_world_size()) * dist.get_rank() e = (grads.shape[0] // dist.get_world_size()) * (dist.get_rank() + 1) grads = grads.contiguous() dist.all_reduce(grads) return grads[s:e] return grads class AllReduce(torch.autograd.Function): """ reduce the variable on different nodes toghther """ @staticmethod def forward(ctx, x): if ( dist.is_available() and dist.is_initialized() and (dist.get_world_size() > 1) ): x = x.contiguous() / dist.get_world_size() dist.all_reduce(x) return x @staticmethod def backward(ctx, grads): return grads def load_pretrained_weights( model, pretrained_weights, checkpoint_key, model_name, patch_size ): if os.path.isfile(pretrained_weights): state_dict = torch.load(pretrained_weights, map_location="cpu") if checkpoint_key is not None and checkpoint_key in state_dict: print(f"Take key {checkpoint_key} in provided checkpoint dict") state_dict = state_dict[checkpoint_key] # remove `module.` prefix state_dict = {k.replace("module.", ""): v for k, v in state_dict.items()} # remove `backbone.` prefix induced by multicrop wrapper state_dict = {k.replace("backbone.", ""): v for k, v in state_dict.items()} # remove `encoder.` prefix induced by MAE state_dict = {k.replace("encoder.", ""): v for k, v in state_dict.items()} msg = model.load_state_dict(state_dict, strict=False) print( "Pretrained weights found at {} and loaded with msg: {}".format( pretrained_weights, msg ) ) else: print( "There is no reference weights available for this model => We use random weights." ) @torch.no_grad() def concat_all_gather(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ tensors_gather = [ torch.ones_like(tensor) for _ in range(torch.distributed.get_world_size()) ] torch.distributed.all_gather(tensors_gather, tensor, async_op=False) output = torch.cat(tensors_gather, dim=0) return output