--- license: mit tags: - generated_from_trainer datasets: - glue metrics: - matthews_correlation base_model: roberta-base model-index: - name: roberta-base-finetuned-cola results: [] --- # roberta-base-finetuned-cola This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6074 - Matthews Correlation: 0.6221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 16 - total_train_batch_size: 16 - total_eval_batch_size: 5 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - training precision: Mixed Precision ### Training results | Training Loss | Epoch | Step | Validation Loss | Matthews Correlation | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | 0.4536 | 1.0 | 534 | 0.4104 | 0.5738 | | 0.4876 | 2.0 | 1068 | 0.5156 | 0.5729 | | 0.1281 | 3.0 | 1602 | 0.5083 | 0.6145 | | 0.0441 | 4.0 | 2136 | 0.5483 | 0.6119 | | 0.2985 | 5.0 | 2670 | 0.6074 | 0.6221 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.10.0+cpu - Datasets 2.7.1 - Tokenizers 0.12.0