import torch import torch.nn as nn import torch.nn.functional as F import os # 配置类定义 class Config: def __init__(self): # 模型架构参数 self.hidden_size = 768 self.num_attention_heads = 12 self.num_hidden_layers = 12 self.intermediate_size = 3072 self.hidden_dropout_prob = 0.1 self.attention_probs_dropout_prob = 0.1 # 图像相关 self.image_size = 224 self.image_channels = 3 self.patch_size = 16 # 文本相关 self.max_position_embeddings = 512 self.vocab_size = 30522 self.type_vocab_size = 2 # 语音相关 self.audio_sample_rate = 16000 self.audio_frame_size = 1024 self.audio_hop_size = 512 # 任务相关 self.enable_vqa = True self.enable_caption = True self.enable_retrieval = True self.enable_asr = True # 语音识别 self.enable_realtime_asr = True # 实时语音识别 # 训练相关 self.batch_size = 32 self.learning_rate = 1e-4 self.weight_decay = 0.01 self.warmup_steps = 10000 self.max_steps = 100000 # 模型相关类定义 class ImageEncoder(nn.Module): def __init__(self, config): super(ImageEncoder, self).__init__() self.config = config self.encoder_layer = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3), nn.ReLU(), nn.MaxPool2d(2, 2), nn.Flatten(), nn.Linear(64 * 111 * 111, config.hidden_size) ) def forward(self, image): image_features = self.encoder_layer(image) return image_features class TextEncoder(nn.Module): def __init__(self, config): super(TextEncoder, self).__init__() self.config = config self.transformer_layer = nn.TransformerEncoderLayer( d_model=config.hidden_size, nhead=config.num_attention_heads, batch_first=True ) self.transformer_encoder = nn.TransformerEncoder( self.transformer_layer, num_layers=config.num_hidden_layers ) def forward(self, text): text_features = self.transformer_encoder(text).mean(dim=1) return text_features class AudioEncoder(nn.Module): def __init__(self, config): super(AudioEncoder, self).__init__() self.config = config self.encoder_layer = nn.Sequential( nn.Linear(config.audio_sample_rate, config.hidden_size), nn.ReLU(), nn.Linear(config.hidden_size, config.hidden_size) ) def forward(self, audio): audio_features = self.encoder_layer(audio) return audio_features class FusionLayer(nn.Module): def __init__(self, config): super(FusionLayer, self).__init__() self.config = config self.fusion_layer = nn.Linear(config.hidden_size * 3, config.hidden_size) def forward(self, image_features, text_features, audio_features): fused_features = torch.cat((image_features, text_features, audio_features), dim=1) fused_features = self.fusion_layer(fused_features) return fused_features class VQALayer(nn.Module): def __init__(self, config): super(VQALayer, self).__init__() self.config = config self.vqa_layer = nn.Linear(config.hidden_size, config.vocab_size) def forward(self, fused_features): vqa_output = self.vqa_layer(fused_features) return vqa_output class CaptionLayer(nn.Module): def __init__(self, config): super(CaptionLayer, self).__init__() self.config = config self.caption_layer = nn.Linear(config.hidden_size, config.vocab_size) def forward(self, fused_features): caption_output = self.caption_layer(fused_features) return caption_output class RetrievalLayer(nn.Module): def __init__(self, config): super(RetrievalLayer, self).__init__() self.config = config self.retrieval_layer = nn.Linear(config.hidden_size, config.vocab_size) def forward(self, fused_features): retrieval_output = self.retrieval_layer(fused_features) return retrieval_output class ASRLayer(nn.Module): def __init__(self, config): super(ASRLayer, self).__init__() self.config = config self.asr_layer = nn.Linear(config.hidden_size, config.vocab_size) def forward(self, fused_features): asr_output = self.asr_layer(fused_features) return asr_output class RealtimeASRLayer(nn.Module): def __init__(self, config): super(RealtimeASRLayer, self).__init__() self.config = config self.realtime_asr_layer = nn.Linear(config.hidden_size, config.vocab_size) def forward(self, fused_features): realtime_asr_output = self.realtime_asr_layer(fused_features) return realtime_asr_output class TextOutputLayer(nn.Module): def __init__(self, config): super(TextOutputLayer, self).__init__() self.config = config self.text_output_layer = nn.Linear(config.hidden_size, config.vocab_size) def forward(self, fused_features): text_output = self.text_output_layer(fused_features) return text_output # 主模型定义 class AutoModel(nn.Module): def __init__(self, config): super(AutoModel, self).__init__() self.config = config self.image_encoder = ImageEncoder(config) self.text_encoder = TextEncoder(config) self.audio_encoder = AudioEncoder(config) self.fusion_layer = FusionLayer(config) self.vqa_layer = VQALayer(config) self.caption_layer = CaptionLayer(config) self.retrieval_layer = RetrievalLayer(config) self.asr_layer = ASRLayer(config) self.realtime_asr_layer = RealtimeASRLayer(config) self.text_output_layer = TextOutputLayer(config) def forward(self, image, text, audio): image_features = self.image_encoder(image) text_features = self.text_encoder(text) audio_features = self.audio_encoder(audio) fused_features = self.fusion_layer(image_features, text_features, audio_features) vqa_output = self.vqa_layer(fused_features) caption_output = self.caption_layer(fused_features) retrieval_output = self.retrieval_layer(fused_features) asr_output = self.asr_layer(fused_features) realtime_asr_output = self.realtime_asr_layer(fused_features) text_output = self.text_output_layer(fused_features) return vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output, text_output # 测试代码 config = Config() model = AutoModel(config) image = torch.randn(1, 3, 224, 224) text = torch.randn(1, config.max_position_embeddings, config.hidden_size) audio = torch.randn(1, config.audio_sample_rate) vqa_output, caption_output, retrieval_output, asr_output, realtime_asr_output, text_output = model(image, text, audio) # 输出结果 print("VQA output shape:", vqa_output.shape) print("Caption output shape:", caption_output.shape) print("Retrieval output shape:", retrieval_output.shape) print("ASR output shape:", asr_output.shape) print("Realtime ASR output shape:", realtime_asr_output.shape) print("Text output shape:", text_output.shape) # 打印总参数数量 total_params = sum(p.numel() for p in model.parameters()) print(f"\n总参数数量: {total_params}") # 保存模型权重 save_path = "save.pth" torch.save(model.state_dict(), save_path) print(f"模型权重已保存到: {save_path}")