--- base_model: zeon8985army/IndonesiaLukasLargeV3 datasets: - '-' language: - id library_name: peft tags: - id-asr-leaderboard - generated_from_trainer model-index: - name: zeon8985army/IndonesiaLukasLargeV3-2 results: [] --- # zeon8985army/IndonesiaLukasLargeV3-2 This model is a fine-tuned version of [zeon8985army/IndonesiaLukasLargeV3-2](https://huggingface.co/zeon8985army/IndonesiaLukasLargeV3-2) on the Mozilla & GoogleFleur dataset. It achieves the following results on the evaluation set: - Loss: 0.1613 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 12 - training_steps: 552 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.2396 | 0.0785 | 23 | 0.2246 | | 0.2199 | 0.1570 | 46 | 0.2234 | | 0.1963 | 0.2355 | 69 | 0.2176 | | 0.206 | 0.3140 | 92 | 0.2117 | | 0.1755 | 0.3925 | 115 | 0.1899 | | 0.1713 | 0.4710 | 138 | 0.2041 | | 0.2126 | 0.5495 | 161 | 0.1806 | | 0.1778 | 0.6280 | 184 | 0.1787 | | 0.1646 | 0.7065 | 207 | 0.1767 | | 0.1674 | 0.7850 | 230 | 0.1746 | | 0.1545 | 0.8635 | 253 | 0.1725 | | 0.1742 | 0.9420 | 276 | 0.1708 | | 0.1434 | 1.0205 | 299 | 0.1687 | | 0.15 | 1.0990 | 322 | 0.1679 | | 0.1374 | 1.1775 | 345 | 0.1671 | | 0.136 | 1.2560 | 368 | 0.1650 | | 0.1407 | 1.3345 | 391 | 0.1642 | | 0.153 | 1.4130 | 414 | 0.1629 | | 0.1505 | 1.4915 | 437 | 0.1632 | | 0.1543 | 1.5700 | 460 | 0.1624 | | 0.1394 | 1.6485 | 483 | 0.1616 | | 0.1255 | 1.7270 | 506 | 0.1617 | | 0.1342 | 1.8055 | 529 | 0.1613 | | 0.1459 | 1.8840 | 552 | 0.1613 | ### Framework versions - PEFT 0.9.0 - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.19.1