--- base_model: mistralai/Mistral-7B-Instruct-v0.3 datasets: - generator library_name: peft license: apache-2.0 tags: - trl - sft - generated_from_trainer model-index: - name: mistral_7b_cosine_lr results: [] --- # mistral_7b_cosine_lr This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.3](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3) on the generator dataset. It achieves the following results on the evaluation set: - Loss: 0.3803 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine_with_restarts - lr_scheduler_warmup_ratio: 0.03 - lr_scheduler_warmup_steps: 15 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.0242 | 0.0366 | 10 | 0.6227 | | 0.5884 | 0.0732 | 20 | 0.5310 | | 0.519 | 0.1098 | 30 | 0.4930 | | 0.4818 | 0.1465 | 40 | 0.4653 | | 0.4722 | 0.1831 | 50 | 0.4537 | | 0.4513 | 0.2197 | 60 | 0.4440 | | 0.4481 | 0.2563 | 70 | 0.4377 | | 0.4455 | 0.2929 | 80 | 0.4321 | | 0.4344 | 0.3295 | 90 | 0.4271 | | 0.4345 | 0.3661 | 100 | 0.4233 | | 0.4296 | 0.4027 | 110 | 0.4186 | | 0.4255 | 0.4394 | 120 | 0.4166 | | 0.4173 | 0.4760 | 130 | 0.4131 | | 0.4195 | 0.5126 | 140 | 0.4098 | | 0.4143 | 0.5492 | 150 | 0.4067 | | 0.4103 | 0.5858 | 160 | 0.4043 | | 0.4124 | 0.6224 | 170 | 0.4021 | | 0.4069 | 0.6590 | 180 | 0.3988 | | 0.4041 | 0.6957 | 190 | 0.3981 | | 0.4044 | 0.7323 | 200 | 0.3951 | | 0.3989 | 0.7689 | 210 | 0.3912 | | 0.3947 | 0.8055 | 220 | 0.3895 | | 0.3945 | 0.8421 | 230 | 0.3868 | | 0.3876 | 0.8787 | 240 | 0.3849 | | 0.3877 | 0.9153 | 250 | 0.3839 | | 0.3922 | 0.9519 | 260 | 0.3817 | | 0.3844 | 0.9886 | 270 | 0.3796 | | 0.3491 | 1.0252 | 280 | 0.3832 | | 0.3291 | 1.0618 | 290 | 0.3821 | | 0.3267 | 1.0984 | 300 | 0.3803 | ### Framework versions - PEFT 0.13.2 - Transformers 4.45.2 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0