# -*- coding: utf-8 -*- # Copyright (c) 2024, Songlin Yang, Yu Zhang # "Hierarchically Gated Recurrent Neural Network for Sequence Modeling" [https://arxiv.org/abs/2311.04823] from __future__ import annotations from typing import TYPE_CHECKING, Optional, Tuple import torch import torch.nn as nn import torch.nn.functional as F from fla.modules import FusedRMSNormSwishGate, ShortConvolution from fla.modules.activations import swiglu from fla.ops.hgrn import chunk_hgrn, fused_recurrent_hgrn if TYPE_CHECKING: from fla.models.utils import Cache class HGRNAttention(nn.Module): def __init__( self, mode: str = 'chunk', hidden_size: int = 1024, expand_ratio: Optional[int] = 1, use_short_conv: bool = False, conv_size: int = 4, conv_bias: bool = False, elementwise_affine: Optional[bool] = True, norm_eps: float = 1e-5, layer_idx: int = None ) -> HGRNAttention: super().__init__() self.mode = mode self.hidden_size = hidden_size self.expand_ratio = expand_ratio self.input_dim = int(hidden_size * expand_ratio) self.use_short_conv = use_short_conv self.conv_size = conv_size self.conv_bias = conv_bias self.layer_idx = layer_idx assert mode in ['chunk', 'fused_recurrent'], f"Not suppoerted mode `{mode}`." self.i_proj = nn.Linear(hidden_size, self.input_dim, bias=False) self.f_proj = nn.Linear(hidden_size, self.input_dim, bias=False) self.g_proj = nn.Linear(hidden_size, self.input_dim, bias=False) if use_short_conv: self.conv_size = conv_size self.q_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None) self.f_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None) self.i_conv1d = ShortConvolution(self.input_dim, conv_size, activation=None) self.g_norm = FusedRMSNormSwishGate(self.input_dim, elementwise_affine, norm_eps) self.o_proj = nn.Linear(self.input_dim, hidden_size, bias=False) self.apply(self._initialize_weights) def _initialize_weights(self, module: nn.Module): if getattr(module, "_is_hf_initialized", False): return if isinstance(module, nn.Linear): nn.init.xavier_uniform_(module.weight, gain=2 ** -2.5) if module.bias is not None: nn.init.zeros_(module.bias) module._is_hf_initialized = True def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, use_cache: Optional[bool] = False, output_attentions: Optional[bool] = False, lower_bound: Optional[torch.Tensor] = None, **kwargs ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]: if attention_mask is not None: assert len(attention_mask.shape) == 2, ( "Expected attention_mask as a 0-1 matrix with shape [batch_size, seq_len] " "for padding purposes (0 indicating padding). " "Arbitrary attention masks of shape [batch_size, seq_len, seq_len] are not allowed." ) # launching the triton kernel for just one token will actually be slower mode = 'fused_recurrent' if hidden_states.shape[1] == 1 else self.mode last_state = None if past_key_values is not None and len(past_key_values) > self.layer_idx: last_state = past_key_values[self.layer_idx] if self.use_short_conv: conv_state_i, conv_state_f = None, None if last_state is not None: conv_state_i, conv_state_f = last_state['conv_state'] conv_mask = attention_mask[:, -hidden_states.shape[1]:] if attention_mask is not None else None i, conv_state_i = self.i_conv1d(x=self.i_proj(hidden_states), mask=conv_mask, cache=conv_state_i, output_final_state=use_cache) f, conv_state_f = self.f_conv1d(x=self.f_proj(hidden_states), mask=conv_mask, cache=conv_state_f, output_final_state=use_cache) else: i = self.i_proj(hidden_states) f = self.f_proj(hidden_states) # the lower bound for the first layer is zero if lower_bound is None or self.layer_idx == 0: i, f = swiglu(i, 1 - f.sigmoid()), F.logsigmoid(f) else: g = lower_bound + (1 - lower_bound) * f.sigmoid() i, f = swiglu(i, 1 - g), g.log() # dealing with left-padding if attention_mask is not None: i = i.mul_(attention_mask[:, -i.shape[-2]:, None]) recurrent_state = last_state['recurrent_state'] if last_state is not None else None if mode == 'chunk': o, recurrent_state = chunk_hgrn(i, f, recurrent_state, use_cache) elif mode == 'fused_recurrent': o, recurrent_state = fused_recurrent_hgrn(i, f, recurrent_state, use_cache) else: raise NotImplementedError(f"Not supported mode `{mode}`.") if past_key_values is not None: past_key_values.update( recurrent_state=recurrent_state, conv_state=(conv_state_i, conv_state_f) if self.use_short_conv else None, layer_idx=self.layer_idx, offset=i.shape[2] ) o = self.g_norm(o, self.g_proj(hidden_states)) o = self.o_proj(o) return o, None, past_key_values def state_size(self, **kwargs) -> int: state_size = self.hidden_size for module in self.children(): if isinstance(module, ShortConvolution): state_size += module.state_size return state_size