# -*- coding: utf-8 -*- from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple import torch import transformers class Cache(transformers.cache_utils.Cache): """ A cache used for storing hidden states produced by flash linear attention models. It stores the states of each layer as the tensor of shape `[batch_size, key_dim, value_dim]`. """ def __init__( self, seen_tokens: int = 0 ) -> Cache: self.states: List[Dict[str, Any]] = [] self._seen_tokens = seen_tokens # Used in `generate` to keep tally of how many tokens the cache has seen def __getitem__(self, layer_idx: int) -> Dict[str, Any]: if layer_idx < len(self): return self.states[layer_idx] else: raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") def __iter__(self): for state in self.states: yield state def __len__(self): return len(self.states) def update( self, recurrent_state: torch.Tensor = None, attn_state: Tuple[torch.Tensor, torch.Tensor] = None, conv_state: Tuple[torch.Tensor] = None, ffn_state: torch.Tensor = None, layer_idx: int = 0, offset: Optional[int] = 1, cache_kwargs: Optional[Dict[str, Any]] = None, ) -> Dict[str, Any]: """ Updates the cache with the new `recurrent_state`/`attn_state`/`conv_state` for the layer `layer_idx`. Args: recurrent_state (`torch.Tensor`, `optional`): The new recurrent state to cache. attn_state (`Tuple[torch.Tensor, torch.Tensor]`, `optional`): The new attention key/value states to cache. conv_state (`Tuple[torch.Tensor]`, `optional`): The new convolution state to cache. layer_idx (`int`, defaults to 0): The index of the layer to cache the states for. offset (`int`, `optional`, defaults to 1): The number of new tokens being processed. cache_kwargs (`Dict[str, Any]`, `optional`): Additional arguments for the cache subclass. Return: Dictionary of the updated state. """ # Update the number of seen tokens if layer_idx == 0: self._seen_tokens += offset if attn_state is not None: input_size = attn_state[0].shape[-2] window_size = cache_kwargs.get('window_size', None) if not isinstance(attn_state, Tuple) or len(attn_state) != 2: raise ValueError("`attn_state` must be a tuple of two tensors for key/value states") if len(self.states) <= layer_idx: if attn_state is not None: if window_size is not None and input_size > window_size: attn_state = (attn_state[0][..., -window_size:, :].contiguous(), attn_state[1][..., -window_size:, :].contiguous()) state = dict( recurrent_state=recurrent_state, attn_state=attn_state, conv_state=conv_state, ffn_state=ffn_state ) self.states.append(state) else: state = self.states[layer_idx] if recurrent_state is not None: state['recurrent_state'] = recurrent_state if attn_state is not None: key_state, value_state = state['attn_state'] if window_size is not None and key_state.shape[-2] == window_size: # DO NOT allocate new memory if the cache is full # roll the key/value states to the left by `input_size` key_state = key_state.roll(-input_size, -2) value_state = value_state.roll(-input_size, -2) # replace the last `input_size` tokens with the new key/value states key_state[..., -input_size:, :] = attn_state[0] value_state[..., -input_size:, :] = attn_state[1] attn_state = (key_state, value_state) else: attn_state = (torch.cat([key_state, attn_state[0]], -2), torch.cat([value_state, attn_state[1]], -2),) state['attn_state'] = attn_state if conv_state is not None: state['conv_state'] = conv_state if ffn_state is not None: state['ffn_state'] = ffn_state return state def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: """Returns the sequence length of the cached states. A layer index can be optionally passed.""" if len(self.states) <= layer_idx: return 0 return self._seen_tokens def get_max_length(self) -> Optional[int]: """Returns the maximum sequence length of the cached states. Cache does not have a maximum length.""" return None def to_legacy_cache(self) -> Tuple: return tuple(self.states) @classmethod def from_legacy_cache( cls, past_key_values: Optional[Tuple] = None, seen_tokens: int = 0 ) -> Cache: """Converts a cache in the legacy cache format into an equivalent `Cache`.""" cache = cls(seen_tokens) if past_key_values is not None: for layer_idx in range(len(past_key_values)): cache.states.append(past_key_values[layer_idx]) return cache