# -*- coding: utf-8 -*- from typing import Optional from transformers.configuration_utils import PretrainedConfig class TransformerConfig(PretrainedConfig): model_type = 'transformer' keys_to_ignore_at_inference = ['past_key_values'] def __init__( self, vocab_size: int = 32000, hidden_size: int = 2048, num_hidden_layers: int = 24, num_heads: int = 32, num_kv_heads: int = None, window_size: Optional[int] = None, rope_theta: Optional[float] = 10000., max_position_embeddings: int = 2048, hidden_ratio: Optional[int] = 4, intermediate_size: Optional[int] = None, hidden_act: str = "swish", initializer_range: float = 0.02, elementwise_affine: Optional[bool] = True, norm_first: bool = False, norm_eps: float = 1e-6, use_cache: bool = True, pad_token_id: int = None, bos_token_id: int = 1, eos_token_id: int = 2, tie_word_embeddings: bool = False, attention_bias: bool = False, fuse_norm: bool = True, fuse_cross_entropy: bool = True, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.num_hidden_layers = num_hidden_layers self.num_heads = num_heads self.num_kv_heads = num_kv_heads self.window_size = window_size self.rope_theta = rope_theta self.max_position_embeddings = max_position_embeddings self.hidden_ratio = hidden_ratio self.intermediate_size = intermediate_size self.hidden_act = hidden_act self.initializer_range = initializer_range self.elementwise_affine = elementwise_affine self.norm_first = norm_first self.norm_eps = norm_eps self.use_cache = use_cache self.attention_bias = attention_bias self.fuse_cross_entropy = fuse_cross_entropy self.fuse_norm = fuse_norm super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )