# -*- coding: utf-8 -*- from typing import Dict, Optional from transformers.configuration_utils import PretrainedConfig class GSAConfig(PretrainedConfig): model_type = 'gsa' keys_to_ignore_at_inference = ['past_key_values'] def __init__( self, hidden_size: int = 2048, gate_logit_normalizer: Optional[int] = 8, clamp_min: Optional[float] = None, clamp_max: Optional[float] = None, hidden_ratio: Optional[int] = 4, intermediate_size: Optional[int] = None, num_hidden_layers: int = 24, num_heads: int = 4, num_kv_heads: Optional[int] = None, num_slots: Optional[int] = 64, use_short_conv: bool = False, conv_size: int = 4, exapnd_k: float = 1, exapnd_v: float = 1, feature_map: str = 'swish', use_output_gate: bool = False, use_norm: bool = True, max_position_embeddings: int = 2048, hidden_act: str = "swish", elementwise_affine: Optional[bool] = True, norm_first: bool = True, norm_eps: float = 1e-6, attn: Optional[Dict] = None, use_cache: bool = True, pad_token_id: int = None, bos_token_id: int = 1, eos_token_id: int = 2, initializer_range: float = 0.02, tie_word_embeddings: bool = False, fuse_norm: bool = True, fuse_cross_entropy: bool = True, vocab_size: int = 32000, **kwargs ): self.hidden_size = hidden_size self.gate_logit_normalizer = gate_logit_normalizer self.clamp_min = clamp_min self.clamp_max = clamp_max self.hidden_ratio = hidden_ratio self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_heads = num_heads self.num_kv_heads = num_kv_heads self.num_slots = num_slots self.use_short_conv = use_short_conv self.conv_size = conv_size self.expand_k = exapnd_k self.expand_v = exapnd_v self.feature_map = feature_map self.use_output_gate = use_output_gate self.use_norm = use_norm self.max_position_embeddings = max_position_embeddings self.hidden_act = hidden_act self.elementwise_affine = elementwise_affine self.norm_first = norm_first self.norm_eps = norm_eps self.attn = attn self.use_cache = use_cache self.initializer_range = initializer_range self.fuse_cross_entropy = fuse_cross_entropy self.fuse_norm = fuse_norm self.vocab_size = vocab_size if attn is not None: if not isinstance(attn, Dict): raise ValueError("attn must be a dictionary") if 'layers' not in attn: raise ValueError("Layer indices must be provided to initialize hybrid attention layers") if 'num_heads' not in attn: raise ValueError("Number of heads must be provided to initialize hybrid attention layers") attn['num_kv_heads'] = attn.get('num_kv_heads', attn['num_heads']) attn['window_size'] = attn.get('window_size', None) super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, )