--- license: apache-2.0 --- ## 🧩 Simple Use Case This section demonstrates a simple use case of how to interact with our model to solve problems in a step-by-step, friendly manner. ### Define the Function We define a function `get_completion` which takes user input, combines it with a predefined system prompt, and then sends this combined prompt to our model. The model's response is then printed out. Here's how the function is implemented: ```python import torch from transformers import pipeline import os # Load model test_pipeline = pipeline(model="zaursamedov1/FIxtral", torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto") ### Define the function def get_completion(input): system = "Think step by step and solve the problem in a friendly way." prompt = f"#### System: {system}\\n#### User: \\n{input}\\n\\n#### Response from FIxtral model:" print(prompt) fixtral_prompt = test_pipeline(prompt, max_new_tokens=500) return fixtral_prompt[0]["generated_text"] # Let's prompt prompt = "problem" print(get_completion(prompt))