--- language: - zh pipeline_tag: text-generation tags: - llama2 --- This repository introduces a 4-bit quantized version of the [yayi-7b-llama2 model](https://huggingface.co/wenge-research/yayi-7b-llama2) proposed by [wenge-research](https://www.wenge.com/). The quantization process was performed using the [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ). ## Usage Example ```python import torch from auto_gptq import AutoGPTQForCausalLM from transformers import LlamaTokenizer, GenerationConfig from transformers import StoppingCriteria, StoppingCriteriaList pretrained_model_name_or_path = "zake7749/yayi-7b-llama2-4bit-autogptq" tokenizer = LlamaTokenizer.from_pretrained(pretrained_model_name_or_path) model = AutoGPTQForCausalLM.from_quantized(pretrained_model_name_or_path) # Define the stopping criteria class KeywordsStoppingCriteria(StoppingCriteria): def __init__(self, keywords_ids:list): self.keywords = keywords_ids def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: if input_ids[0][-1] in self.keywords: return True return False stop_words = ["<|End|>", "<|YaYi|>", "<|Human|>", ""] stop_ids = [tokenizer.encode(w)[-1] for w in stop_words] stop_criteria = KeywordsStoppingCriteria(stop_ids) # inference prompt = "你是谁?" formatted_prompt = f"""<|System|>: You are a helpful, respectful and honest assistant named YaYi developed by Beijing Wenge Technology Co.,Ltd. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information. <|Human|>: {prompt} <|YaYi|>: """ inputs = tokenizer(formatted_prompt, return_tensors="pt").to(model.device) eos_token_id = tokenizer("<|End|>").input_ids[0] generation_config = GenerationConfig( eos_token_id=eos_token_id, pad_token_id=eos_token_id, do_sample=True, max_new_tokens=256, temperature=0.3, repetition_penalty=1.1, no_repeat_ngram_size=0 ) response = model.generate(**inputs, generation_config=generation_config, stopping_criteria=StoppingCriteriaList([stop_criteria])) response = [response[0][len(inputs.input_ids[0]):]] response_str = tokenizer.batch_decode(response, skip_special_tokens=False, clean_up_tokenization_spaces=False)[0] print(response_str) ``` ## License Please refer to [YaYi/LICENSE_MODEL](https://github.com/wenge-research/YaYi/blob/main/LICENSE_MODEL).