--- base_model: - yuvraj17/Llama-3-8B-spectrum-25 - ruggsea/Llama3-stanford-encyclopedia-philosophy-QA - arcee-ai/Llama-3.1-SuperNova-Lite tags: - merge - mergekit - lazymergekit - yuvraj17/Llama-3-8B-spectrum-25 - ruggsea/Llama3-stanford-encyclopedia-philosophy-QA - arcee-ai/Llama-3.1-SuperNova-Lite license: apache-2.0 language: - en pipeline_tag: text-classification --- # Llama3-8B-SuperNova-Spectrum-dare_ties Llama3-8B-SuperNova-Spectrum-dare_ties is a `DARE_TIES` merge of the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): * [yuvraj17/Llama-3-8B-spectrum-25](https://huggingface.co/yuvraj17/Llama-3-8B-spectrum-25) * [ruggsea/Llama3-stanford-encyclopedia-philosophy-QA](https://huggingface.co/ruggsea/Llama3-stanford-encyclopedia-philosophy-QA) * [arcee-ai/Llama-3.1-SuperNova-Lite](https://huggingface.co/arcee-ai/Llama-3.1-SuperNova-Lite) ## DARE_TIES Merging ### TIES Merging [TIES](https://arxiv.org/abs/2306.01708) Merging, introduced by Yadav et al. (2023), is a method for merging multiple specialized models into one general-purpose model. It solves two key challenges: * **Redundancy Removal**: Identifies and eliminates overlapping or unnecessary information between models, making the final model more efficient. * **Conflict Resolution**: Reconciles differences between models by creating a unified sign vector that represents the most dominant direction of change across all models. ### DARE Merging Introduced by Yu et al. (2023), [DARE](https://arxiv.org/abs/2311.03099) uses an approach similar to TIES with two main differences: * **Weight Pruning**: Randomly resets some fine-tuned weights to their original values, reducing model complexity. * **Weight Scaling**: Adjusts the remaining weights by scaling and combining them with the base model's weights to maintain consistent performance. Mergekit’s implementation of this method has two flavours: with the sign election step of TIES (`dare_ties`) or without (`dare_linear`). For more information refer this [Merge Large Language Models with MergeKit by Maxime Labonne](https://towardsdatascience.com/merge-large-language-models-with-mergekit-2118fb392b54) ## 🧩 Configuration ```yaml models: - model: NousResearch/Meta-Llama-3-8B # No parameters necessary for base model - model: yuvraj17/Llama-3-8B-spectrum-25 parameters: density: 0.56 weight: 0.12 - model: ruggsea/Llama3-stanford-encyclopedia-philosophy-QA parameters: density: 0.56 weight: 0.12 - model: arcee-ai/Llama-3.1-SuperNova-Lite parameters: density: 0.58 weight: 0.55 merge_method: dare_ties base_model: NousResearch/Meta-Llama-3-8B dtype: bfloat16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "yuvraj17/Llama3-8B-SuperNova-Spectrum-dare_ties" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ``` ## 🏆 Evaluation Scores Coming soon ## Special thanks & Reference - Maxime Labonne for their easy-to-use colab-notebook [Merging LLMs with MergeKit](https://github.com/mlabonne/llm-course/blob/main/Mergekit.ipynb) and [Blog](https://towardsdatascience.com/merge-large-language-models-with-mergekit-2118fb392b54) - Authors of [Mergekit](https://github.com/arcee-ai/mergekit)