--- library_name: transformers pipeline_tag: text-generation inference: true widget: - text: Hello! example_title: Hello world group: Python --- This model is for debugging. It is randomly initialized using the config from [Qwen/Qwen2.5-72B-Instruct](https://huggingface.co/Qwen/Qwen2.5-72B-Instruct) but with smaller size. Codes: ```python import transformers import torch import os from huggingface_hub import create_repo, upload_folder import accelerate model_id = 'Qwen/Qwen2.5-72B-Instruct' save_path = '/tmp/yujiepan/qwen2.5-128k-tiny-random' repo_id = 'yujiepan/qwen2.5-128k-tiny-random' os.system(f'rm -rf {save_path}') config = transformers.AutoConfig.from_pretrained( model_id, trust_remote_code=True, ) config._name_or_path = model_id config.hidden_size = 8 config.intermediate_size = 16 config.num_key_value_heads = 2 config.num_attention_heads = 4 config.num_hidden_layers = 2 config.max_window_layers = 1 config.rope_scaling = { "factor": 4.0, "original_max_position_embeddings": 32768, "type": "yarn" } transformers.set_seed(42) model = transformers.AutoModelForCausalLM.from_config( config, trust_remote_code=True, ) model.generation_config = transformers.GenerationConfig.from_pretrained( model_id) model = model.to(torch.bfloat16) transformers.set_seed(42) with torch.no_grad(): for p in model.parameters(): torch.nn.init.normal_(p) model.save_pretrained(save_path) tokenizer = transformers.AutoTokenizer.from_pretrained( model_id, trust_remote_code=True, ) tokenizer.save_pretrained(save_path) output = model.float().generate(torch.tensor( [[1, 2, 3]]).long(), max_length=16, do_sample=True) os.system(f'ls -alh {save_path}') # os.system(f'rm -rf {save_path}/model.safetensors') # create_repo(repo_id, exist_ok=True) # upload_folder(repo_id=repo_id, folder_path=save_path) ```