--- library_name: transformers tags: - llm-jp - japanese - instruction-tuning --- # Model Card for yuhkis/llm-jp-3-13b-finetune ## Model Details ### Model Description This is a LoRA-tuned version of LLM-jp-3-13b, fine-tuned on the Ichikara Instruction dataset. - **Developed by:** Yuhki Shiraishi - **Model type:** Instruction-tuned Japanese Language Model - **Language:** Japanese - **License:** CC-BY-NC-SA - **Finetuned from model:** llm-jp/llm-jp-3-13b ## Uses ### Direct Use To use this model for inference: ```python from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig import torch model_id = "yuhkis/llm-jp-3-13b-finetune" bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, ) model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto", token=HF_TOKEN ) tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token=HF_TOKEN) ``` ### Output Format The model outputs results in JSONL format with required fields: - task_id: Task identifier - output: Generated response Example output: ```json {"task_id": 0, "output": "応答テキスト"} ``` ### Out-of-Scope Use This model should not be used for: - Commercial applications due to license restrictions - Critical decision-making without human oversight - Applications requiring strict reliability guarantees ## Bias, Risks, and Limitations - The model inherits biases from its training data - Output quality may vary depending on input complexity - The model should not be used for making critical decisions without human oversight ### Recommendations Users should be aware of the model's limitations and verify outputs when used in applications. ## Training Details ### Training Data - Dataset: Ichikara Instruction Dataset ### Training Procedure - **Training regime:** bf16 mixed precision - **Library:** 🤗 Transformers - **Optimization:** LoRA (Low-Rank Adaptation) ## Technical Specifications ### Model Architecture - Base model: LLM-jp-3-13b - Adaptation method: LoRA ## Citation **BibTeX:** ```bibtex @misc{shiraishi2024llm, title={LLM-jp-3-13b-finetune: Instruction-tuned Japanese Language Model}, author={Yuhki Shiraishi}, year={2024}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/yuhkis/llm-jp-3-13b-finetune}} } ``` **Base Model Citation:** ```bibtex @misc{llm-jp2024, title={LLM-jp-3: Large Language Model for Japanese}, author={LLM-jp Project Team}, year={2024}, publisher={Hugging Face}, howpublished={\url{https://huggingface.co/llm-jp/llm-jp-3-13b}} } ``` **Training Data Citation:** ``` 関根聡, 安藤まや, 後藤美知子, 鈴木久美, 河原大輔, 井之上直也, 乾健太郎. ichikara-instruction: LLMのための日本語インストラクションデータの構築. 言語処理学会第30回年次大会(2024) ``` ## Model Card Contact **Primary Contact:** - Name: Yuhki Shiraishi - GitHub: [@yuhkis](https://github.com/yuhkis) For questions regarding this model, please open an issue in the GitHub repository or contact via HuggingFace discussion forum. Please include "LLM-jp-3-13b-finetune" in the subject line of any correspondence.