|
--- |
|
license: mit |
|
language: |
|
- zh |
|
tags: |
|
- gpt2 |
|
- vit |
|
--- |
|
# 模型介绍 |
|
|
|
![](https://ankur3107.github.io/assets/images/vision-encoder-decoder.png) |
|
|
|
|
|
1. vit对图像做encoder,然后再用gpt2做decoder |
|
2. vit模型使用的是`google/vit-base-patch16-224`, gpt2使用的是`yuanzhoulvpi/gpt2_chinese` |
|
3. 本模型支持中文 |
|
|
|
|
|
# 训练代码 |
|
|
|
[https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/vit-gpt2-image-chinese-captioning](https://github.com/yuanzhoulvpi2017/zero_nlp/tree/main/vit-gpt2-image-chinese-captioning) |
|
|
|
|
|
|
|
|
|
|
|
|
|
# 推理代码 |
|
# infer |
|
|
|
```python |
|
from transformers import (VisionEncoderDecoderModel, |
|
AutoTokenizer,ViTImageProcessor) |
|
import torch |
|
from PIL import Image |
|
|
|
``` |
|
|
|
|
|
```python |
|
vision_encoder_decoder_model_name_or_path = "yuanzhoulvpi/vit-gpt2-image-chinese-captioning"#"vit-gpt2-image-chinese-captioning/checkpoint-3200" |
|
|
|
processor = ViTImageProcessor.from_pretrained(vision_encoder_decoder_model_name_or_path) |
|
tokenizer = AutoTokenizer.from_pretrained(vision_encoder_decoder_model_name_or_path) |
|
model = VisionEncoderDecoderModel.from_pretrained(vision_encoder_decoder_model_name_or_path) |
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
model.to(device) |
|
``` |
|
|
|
|
|
```python |
|
max_length = 16 |
|
num_beams = 4 |
|
gen_kwargs = {"max_length": max_length, "num_beams": num_beams} |
|
|
|
|
|
def predict_step(image_paths): |
|
images = [] |
|
for image_path in image_paths: |
|
i_image = Image.open(image_path) |
|
if i_image.mode != "RGB": |
|
i_image = i_image.convert(mode="RGB") |
|
|
|
images.append(i_image) |
|
|
|
pixel_values = processor(images=images, return_tensors="pt").pixel_values |
|
pixel_values = pixel_values.to(device) |
|
|
|
output_ids = model.generate(pixel_values, **gen_kwargs) |
|
|
|
preds = tokenizer.batch_decode(output_ids, skip_special_tokens=True) |
|
preds = [pred.strip() for pred in preds] |
|
return preds |
|
|
|
|
|
predict_step(['bigdata/image_data/train-1000200.jpg']) |
|
|
|
``` |
|
|
|
|
|
# 效果 |
|
## example 1 |
|
![](images/images1.png) |
|
## example 2 |
|
![](images/images2.png) |