--- license: apache-2.0 language: - zh metrics: - accuracy - precision base_model: - Qwen/Qwen2.5-0.5B --- # Qwen2.5-med-book-main-classification [[中文]](#chinese) [[English]](#english) The model is an intermediate product of the [EPCD (Easy-Data-Clean-Pipeline)](https://github.com/ytzfhqs/EDCP) project, primarily used to distinguish between the main content and non-content (such as book introductions, publisher information, writing standards, revision notes) of **medical textbooks** after performing OCR using [MinerU](https://github.com/opendatalab/MinerU). The base model uses [Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B), avoiding the length limitation of the Bert Tokenizer while providing higher accuracy. # Data Composition - The data consists of scanned PDF copies of textbooks, converted into `Markdown` files through `OCR` using [MinerU](https://github.com/opendatalab/MinerU). After a simple regex-based cleaning, the samples were split using `\n`, and a `Bloom` probabilistic filter was used for precise deduplication, resulting in 50,000 samples. Due to certain legal considerations, we may not plan to make the dataset publicly available. - Due to the nature of textbooks, most samples are main content. According to statistics, in our dataset, 79.89% (40,000) are main content samples, while 20.13% (10,000) are non-content samples. Considering data imbalance, we evaluate the model's performance on both Precision and Accuracy metrics on the test set. - To ensure consistency in the data distribution between the test set and the training set, we used stratified sampling to select 10% of the data as the test set. # Training Techniques - To maximize model accuracy, we used Bayesian optimization (TPE algorithm) and Hyperband pruning (HyperbandPruner) to accelerate hyperparameter tuning. # Model Performance | Dataset | Accuracy | Precision | |---------|----------|-----------| | Train | 0.9894 | 0.9673 | | Test | 0.9788 | 0.9548 | # Usage ```python import torch from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer ID2LABEL = {0: "正文", 1: "非正文"} model_name = 'ytzfhqs/Qwen2.5-med-book-main-classification' model = AutoModelForSequenceClassification.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) text = '下列为修订说明' encoding = tokenizer(text, return_tensors='pt') encoding = {k: v.to(model.device) for k, v in encoding.items()} outputs = model(**encoding) logits = outputs.logits id = torch.argmax(logits, dim=-1).item() response = ID2LABEL[id] print(response) # "非正文" ``` # For Batch Usage ```python import torch from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer ID2LABEL = {0: "正文", 1: "非正文"} model_name = 'ytzfhqs/Qwen2.5-med-book-main-classification' model = AutoModelForSequenceClassification.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") text = ['下列为修订说明','阴离子间隙是一项受到广泛重视的酸碱指标。AG是一个计算值,指血浆中未测定的阴离子与未测定的阳离子的差值,正常机体血浆中的阳离子与阴离子总量相等,均为151mmol/L,从而维持电荷平衡。'] encoding = tokenizer(text, return_tensors='pt',padding=True) encoding = {k: v.to(model.device) for k, v in encoding.items()} outputs = model(**encoding) logits = outputs.logits ids = torch.argmax(logits, dim=-1).tolist() response = [ID2LABEL[id] for id in ids] print(response) # ['非正文', '正文'] ``` # Qwen2.5-med-book-main-classification [[中文]](#chinese) [[English]](#english) 该模型为[EPCD(Easy-Data-Clean-Pipeline)](https://github.com/ytzfhqs/EDCP)项目的中间产物,主要用来区分使用[MinerU](https://github.com/opendatalab/MinerU)进行OCR后的**医学教科书**的正文与非正文(书本简介、出版社信息、编写规范、修订说明)样本。基础模型使用[Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B),避免了Bert Tokenizer长度的限制,并且提供了更高的精度。 # 数据组成 - 数据由教科书PDF扫描件,经过[MinerU](https://github.com/opendatalab/MinerU)进行`OCR`后生成的`Markdown`文件。经过简单的正则化清洗,使用`\n`进行分割样本,经过`Bloom`概率过滤器精准去重,最终产生了5W条样本。由于涉及一些法律条款,我们可能没有计划公开数据集。 - 由于教科书的特性,样本大多为正文样本,根据统计,在我们的数据集中,正文样本占总样本的79.89%(4W条),非正文样本占总样本的20.13%(1W条)。由于数据的不平衡性,我们综合考虑模型在测试集上的Precision和Accuracy指标。 - 为了保证测试集与训练集数据分布一致,我们使用分层抽样,选取10%的数据构成测试集。 # 训练技巧 - 为了尽可能提高模型精度,我们使用了贝叶斯优化(TPE算法)和Hyperband修剪器(HyperbandPruner)加快模型调参效率。 # 模型表现 | Dataset | Accuracy | Precision | |---------|----------|-----------| | Train | 0.9894 | 0.9673 | | Test | 0.9788 | 0.9548 | # Usage ```python import torch from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer ID2LABEL = {0: "正文", 1: "非正文"} model_name = 'ytzfhqs/Qwen2.5-med-book-main-classification' model = AutoModelForSequenceClassification.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name) text = '下列为修订说明' encoding = tokenizer(text, return_tensors='pt') encoding = {k: v.to(model.device) for k, v in encoding.items()} outputs = model(**encoding) logits = outputs.logits id = torch.argmax(logits, dim=-1).item() response = ID2LABEL[id] print(response) # "非正文" ``` # For Batch Usage ```python import torch from transformers import AutoModelForSequenceClassification from transformers import AutoTokenizer ID2LABEL = {0: "正文", 1: "非正文"} model_name = 'ytzfhqs/Qwen2.5-med-book-main-classification' model = AutoModelForSequenceClassification.from_pretrained( model_name, torch_dtype="auto", device_map="auto" ) tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left") text = ['下列为修订说明','阴离子间隙是一项受到广泛重视的酸碱指标。AG是一个计算值,指血浆中未测定的阴离子与未测定的阳离子的差值,正常机体血浆中的阳离子与阴离子总量相等,均为151mmol/L,从而维持电荷平衡。'] encoding = tokenizer(text, return_tensors='pt',padding=True) encoding = {k: v.to(model.device) for k, v in encoding.items()} outputs = model(**encoding) logits = outputs.logits ids = torch.argmax(logits, dim=-1).tolist() response = [ID2LABEL[id] for id in ids] print(response) # ['非正文', '正文'] ```