--- license: apache-2.0 base_model: Dr-BERT/DrBERT-7GB tags: - generated_from_trainer datasets: - quaero metrics: - precision - recall - f1 - accuracy model-index: - name: drbert-7gb-finedtuned-ner results: - task: name: Token Classification type: token-classification dataset: name: quaero type: quaero config: medline split: validation args: medline metrics: - name: Precision type: precision value: 0.5218963439132182 - name: Recall type: recall value: 0.5781041388518025 - name: F1 type: f1 value: 0.5485641891891893 - name: Accuracy type: accuracy value: 0.8009761388286334 --- # drbert-7gb-finedtuned-ner This model is a fine-tuned version of [Dr-BERT/DrBERT-7GB](https://huggingface.co/Dr-BERT/DrBERT-7GB) on the quaero dataset. It achieves the following results on the evaluation set: - Loss: 1.4328 - Precision: 0.5219 - Recall: 0.5781 - F1: 0.5486 - Accuracy: 0.8010 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 105 | 0.7200 | 0.4493 | 0.4833 | 0.4657 | 0.7785 | | No log | 2.0 | 210 | 0.7287 | 0.4381 | 0.5056 | 0.4694 | 0.7791 | | No log | 3.0 | 315 | 0.8443 | 0.4635 | 0.5207 | 0.4905 | 0.7823 | | No log | 4.0 | 420 | 1.0059 | 0.4780 | 0.5269 | 0.5013 | 0.7835 | | 0.4225 | 5.0 | 525 | 0.9944 | 0.4688 | 0.5545 | 0.5081 | 0.7806 | | 0.4225 | 6.0 | 630 | 1.0721 | 0.5104 | 0.5367 | 0.5232 | 0.7944 | | 0.4225 | 7.0 | 735 | 1.1099 | 0.4829 | 0.5639 | 0.5202 | 0.7933 | | 0.4225 | 8.0 | 840 | 1.2544 | 0.4814 | 0.5527 | 0.5146 | 0.7779 | | 0.4225 | 9.0 | 945 | 1.2083 | 0.4823 | 0.5639 | 0.5199 | 0.7905 | | 0.0481 | 10.0 | 1050 | 1.3132 | 0.4892 | 0.5621 | 0.5231 | 0.7924 | | 0.0481 | 11.0 | 1155 | 1.3484 | 0.5040 | 0.5665 | 0.5334 | 0.7942 | | 0.0481 | 12.0 | 1260 | 1.3297 | 0.5042 | 0.5585 | 0.5300 | 0.7989 | | 0.0481 | 13.0 | 1365 | 1.3890 | 0.5023 | 0.5741 | 0.5358 | 0.7955 | | 0.0481 | 14.0 | 1470 | 1.4140 | 0.5111 | 0.5639 | 0.5362 | 0.7985 | | 0.009 | 15.0 | 1575 | 1.4130 | 0.5226 | 0.5550 | 0.5383 | 0.7996 | | 0.009 | 16.0 | 1680 | 1.4197 | 0.5127 | 0.5639 | 0.5371 | 0.7964 | | 0.009 | 17.0 | 1785 | 1.4166 | 0.5262 | 0.5723 | 0.5483 | 0.8015 | | 0.009 | 18.0 | 1890 | 1.4257 | 0.5173 | 0.5781 | 0.5460 | 0.8004 | | 0.009 | 19.0 | 1995 | 1.4318 | 0.5203 | 0.5817 | 0.5493 | 0.8011 | | 0.0018 | 20.0 | 2100 | 1.4328 | 0.5219 | 0.5781 | 0.5486 | 0.8010 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2