--- license: llama3 library_name: peft tags: - llama-factory - generated_from_trainer base_model: meta-llama/Meta-Llama-3-70B-Instruct model-index: - name: llama3-70B-lora-pretrain_v2 results: [] --- # llama3-70B-lora-pretrain_v2 This model is a fine-tuned version of [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.9383 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 500 - num_epochs: 3.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6995 | 0.0939 | 100 | 2.6305 | | 2.4199 | 0.1877 | 200 | 2.3979 | | 2.2722 | 0.2816 | 300 | 2.2180 | | 2.0762 | 0.3754 | 400 | 2.1251 | | 1.9652 | 0.4693 | 500 | 2.0858 | | 2.1893 | 0.5631 | 600 | 2.0629 | | 2.0153 | 0.6570 | 700 | 2.0473 | | 1.9911 | 0.7508 | 800 | 2.0318 | | 2.1041 | 0.8447 | 900 | 2.0198 | | 2.0488 | 0.9385 | 1000 | 2.0117 | | 1.897 | 1.0324 | 1100 | 2.0018 | | 2.0298 | 1.1262 | 1200 | 1.9952 | | 2.0989 | 1.2201 | 1300 | 1.9890 | | 1.8695 | 1.3139 | 1400 | 1.9838 | | 2.1573 | 1.4078 | 1500 | 1.9764 | | 2.0183 | 1.5016 | 1600 | 1.9713 | | 1.9229 | 1.5955 | 1700 | 1.9672 | | 1.9732 | 1.6893 | 1800 | 1.9617 | | 1.6835 | 1.7832 | 1900 | 1.9574 | | 1.9874 | 1.8771 | 2000 | 1.9539 | | 1.7607 | 1.9709 | 2100 | 1.9512 | | 1.9459 | 2.0648 | 2200 | 1.9480 | | 1.7611 | 2.1586 | 2300 | 1.9463 | | 1.8491 | 2.2525 | 2400 | 1.9441 | | 1.9121 | 2.3463 | 2500 | 1.9427 | | 1.8849 | 2.4402 | 2600 | 1.9413 | | 2.0679 | 2.5340 | 2700 | 1.9400 | | 1.9908 | 2.6279 | 2800 | 1.9394 | | 1.9557 | 2.7217 | 2900 | 1.9388 | | 1.9627 | 2.8156 | 3000 | 1.9384 | | 1.8339 | 2.9094 | 3100 | 1.9383 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.0 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.19.1