--- license: afl-3.0 language: - ja library_name: transformers pipeline_tag: text-classification --- # SMM4H-2024 Task 2 Japanese RE ## Overview This is a relation extraction model created by fine-tuning [daisaku-s/medtxt_ner_roberta](https://huggingface.co/daisaku-s/medtxt_ner_roberta) on [SMM4H 2024 Task 2b](https://healthlanguageprocessing.org/smm4h-2024/) corpus. Tag set: * CAUSED * TREATMENT_FOR ## Usage ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer import torch text = "サンプルテキスト" model_name = "yseop/SMM4H2024_Task2b_ja" id2label = ['O', 'CAUSED', 'TREATMENT_FOR'] with torch.inference_mode(): model = AutoModelForSequenceClassification.from_pretrained(model_name).eval() tokenizer = AutoTokenizer.from_pretrained(model_name) encoded_input = tokenizer(text, return_tensors='pt', max_length=512) output = re_model(**encoded_input).logits class_id = output.argmax().item() print(id2label[class_id]) ``` ## Results |Relation|tp|fp|fn|precision|recall|f1| |---|---:|---:|---:|---:|---:|---:| |CAUSED\|DISORDER\|DISORDER|1|163|38|0.0061|0.0256|0.0099| |CAUSED\|DISORDER\|FUNCTION|0|70|13|0|0|0| |CAUSED\|DRUG\|DISORDER|9|196|105|0.0439|0.0789|0.0564| |CAUSED\|DRUG\|FUNCTION|2|59|7|0.0328|0.2222|0.0571| |TREATMENT_FOR\|DISORDER\|DISORDER|0|12|0|0|0|0| |TREATMENT_FOR\|DISORDER\|FUNCTION|0|3|0|0|0|0| |TREATMENT_FOR\|DRUG\|DISORDER|0|15|91|0|0|0| |TREATMENT_FOR\|DRUG\|FUNCTION|0|0|1|0|0|0| |all|12|518|255|0.0226|0.0449|0.0301|