--- base_model: klue/roberta-large tags: - generated_from_trainer datasets: - klue model-index: - name: sts_roberta-large_lr1e-05_wd1e-03_ep7_ckpt results: [] --- # sts_roberta-large_lr1e-05_wd1e-03_ep7_ckpt This model is a fine-tuned version of [klue/roberta-large](https://huggingface.co/klue/roberta-large) on the klue dataset. It achieves the following results on the evaluation set: - Loss: 0.3621 - Mse: 0.3621 - Mae: 0.4438 - R2: 0.8342 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 7 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mse | Mae | R2 | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:| | 1.8712 | 1.0 | 183 | 0.5118 | 0.5118 | 0.5409 | 0.7656 | | 0.1606 | 2.0 | 366 | 0.4621 | 0.4621 | 0.5142 | 0.7884 | | 0.1111 | 3.0 | 549 | 0.4687 | 0.4687 | 0.5088 | 0.7854 | | 0.0837 | 4.0 | 732 | 0.4317 | 0.4317 | 0.4906 | 0.8023 | | 0.0681 | 5.0 | 915 | 0.4662 | 0.4662 | 0.5091 | 0.7865 | | 0.0559 | 6.0 | 1098 | 0.3742 | 0.3742 | 0.4524 | 0.8286 | | 0.0485 | 7.0 | 1281 | 0.3621 | 0.3621 | 0.4438 | 0.8342 | ### Framework versions - Transformers 4.33.2 - Pytorch 2.0.1+cu117 - Datasets 2.13.0 - Tokenizers 0.13.3