--- license: apache-2.0 library_name: diffusers pipeline_tag: text-to-image --- # Scale-wise Distillation 3.5 Medium Scale-wise Distillation (SwD) is a novel framework for accelerating diffusion models (DMs) by progressively increasing spatial resolution during the generation process.
SwD achieves significant speedups (2.5× to 10×) compared to full-resolution models while maintaining or even improving image quality. ![3.5 Medium Demo Image](swd.png) Project page: https://yandex-research.github.io/swd
GitHub: https://github.com/yandex-research/swd
Demo: https://huggingface.co/spaces/dbaranchuk/Scale-wise-Distillation ## Usage Upgrade to the latest version of the [🧨 diffusers library](https://github.com/huggingface/diffusers) ``` pip install -U diffusers ``` and then you can run
(Probably, you will need to specify the visible device: %env CUDA_VISIBLE_DEVICES=0, for correct loading of LoRAs.) ```py import torch from diffusers import StableDiffusion3Pipeline from peft import PeftModel pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3.5-medium", torch_dtype=torch.float16, custom_pipeline='quickjkee/swd_pipeline') pipe = pipe.to("cuda") lora_path = 'yresearch/swd-medium-4-steps' pipe.transformer = PeftModel.from_pretrained( pipe.transformer, lora_path, ) generator = torch.Generator().manual_seed(1) prompt = 'A dog holding a sign that reads Sample Faster' sigmas = [1.0000, 0.9454, 0.7904, 0.6022, 0.0000] scales = [32, 64, 96, 128] images = pipe( prompt, sigmas=torch.tensor(sigmas).to('cuda'), timesteps=torch.tensor(sigmas[:-1]).to('cuda') * 1000, scales=scales, guidance_scale=0.0, height=int(scales[0] * 8), width=int(scales[0] * 8), generator=generator, ).images ```

## Citation ```bibtex @article{starodubcev2025swd, title={Scale-wise Distillation of Diffusion Models}, author={Nikita Starodubcev and Denis Kuznedelev and Artem Babenko and Dmitry Baranchuk}, journal={arXiv preprint arXiv:2503.16397}, year={2025} } ```