opus-mt-id-en-opus100

This model was trained from scratch on the opus100 dataset. It achieves the following results on the evaluation set:

  • Loss: 2.1008
  • Bleu: 32.455

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 4000
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Bleu
1.4869 1.0 31250 1.6303 32.7596
1.433 2.0 62500 1.6474 33.1603
1.3626 3.0 93750 1.6541 32.6599
1.3025 4.0 125000 1.6538 32.961
1.2485 5.0 156250 1.6630 33.1362
1.198 6.0 187500 1.6794 32.0117
1.1492 7.0 218750 1.6910 33.2442
1.102 8.0 250000 1.6874 32.7068
1.0559 9.0 281250 1.6944 32.8825
1.0106 10.0 312500 1.7288 33.2979
0.9662 11.0 343750 1.7402 33.255
0.9219 12.0 375000 1.7589 32.901
0.8783 13.0 406250 1.7893 32.6629
0.8352 14.0 437500 1.8074 32.6507
0.7932 15.0 468750 1.8359 33.0076
0.7516 16.0 500000 1.8694 32.9601
0.7112 17.0 531250 1.8887 32.5161
0.6711 18.0 562500 1.9194 32.5722
0.6326 19.0 593750 1.9512 32.553
0.5955 20.0 625000 1.9791 32.0152
0.5603 21.0 656250 2.0104 32.2671
0.5266 22.0 687500 2.0388 32.1775
0.4956 23.0 718750 2.0663 32.123
0.4681 24.0 750000 2.0849 32.1197
0.4445 25.0 781250 2.1008 32.455

Framework versions

  • Transformers 4.26.1
  • Pytorch 2.0.0
  • Datasets 2.10.1
  • Tokenizers 0.11.0
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train yonathanstwn/opus-mt-id-en-opus100

Evaluation results