{ "_name_or_path": "microsoft/resnet-101", "architectures": [ "ResNetForImageClassification" ], "depths": [ 3, 4, 23, 3 ], "downsample_in_first_stage": false, "embedding_size": 64, "hidden_act": "relu", "hidden_sizes": [ 256, 512, 1024, 2048 ], "id2label": { "0": "beverage cans", "1": "cardboard", "10": "medicines", "11": "metal containers", "12": "news paper", "13": "other metal objects", "14": "paper", "15": "paper cups", "16": "plastic bags", "17": "plastic bottles", "18": "plastic containers", "19": "plastic cups", "2": "cigarette butt", "20": "small appliances", "21": "smartphones", "22": "spray cans", "23": "syringe", "24": "tetra pak", "3": "construction scrap", "4": "electrical cables", "5": "electronic chips", "6": "glass", "7": "gloves", "8": "laptops", "9": "masks" }, "label2id": { "beverage cans": "0", "cardboard": "1", "cigarette butt": "2", "construction scrap": "3", "electrical cables": "4", "electronic chips": "5", "glass": "6", "gloves": "7", "laptops": "8", "masks": "9", "medicines": "10", "metal containers": "11", "news paper": "12", "other metal objects": "13", "paper": "14", "paper cups": "15", "plastic bags": "16", "plastic bottles": "17", "plastic containers": "18", "plastic cups": "19", "small appliances": "20", "smartphones": "21", "spray cans": "22", "syringe": "23", "tetra pak": "24" }, "layer_type": "bottleneck", "model_type": "resnet", "num_channels": 3, "out_features": [ "stage4" ], "out_indices": [ 4 ], "problem_type": "single_label_classification", "stage_names": [ "stem", "stage1", "stage2", "stage3", "stage4" ], "torch_dtype": "float32", "transformers_version": "4.29.2" }