|
import os |
|
import torch |
|
from load_utils import load_model |
|
from guided_diffusion import dist_util |
|
from guided_diffusion.gaussian_diffusion import _encode, _decode |
|
from guided_diffusion.pr_datasets_all import load_data |
|
from tqdm import tqdm |
|
from guided_diffusion.midi_util import visualize_full_piano_roll, save_piano_roll_midi |
|
from music_rule_guidance import music_rules |
|
import matplotlib.pyplot as plt |
|
import warnings |
|
warnings.filterwarnings("ignore") |
|
plt.rcParams["figure.figsize"] = (20,3) |
|
plt.rcParams['figure.dpi'] = 300 |
|
plt.rcParams['savefig.dpi'] = 300 |
|
|
|
|
|
MODEL_NAME = 'kl/f8-all-onset' |
|
MODEL_CKPT = 'taming-transformers/checkpoints/all_onset/epoch_14.ckpt' |
|
|
|
TOTAL_BATCH = 256 |
|
|
|
|
|
def main(): |
|
|
|
data = load_data( |
|
data_dir='datasets/all-len-40-gap-16-no-empty_train.csv', |
|
batch_size=32, |
|
class_cond=True, |
|
image_size=1024, |
|
deterministic=False, |
|
fs=100, |
|
) |
|
embed_model = load_model(MODEL_NAME, MODEL_CKPT) |
|
del embed_model.loss |
|
embed_model.to(dist_util.dev()) |
|
embed_model.eval() |
|
|
|
z_list = [] |
|
with torch.no_grad(): |
|
for _ in tqdm(range(TOTAL_BATCH)): |
|
batch, cond = next(data) |
|
batch = batch.to(dist_util.dev()) |
|
enc = _encode(batch, embed_model, scale_factor=1.) |
|
z_list.append(enc.cpu()) |
|
latents = torch.concat(z_list, dim=0) |
|
scale_factor = 1. / latents.flatten().std().item() |
|
print(f"scale_factor: {scale_factor}") |
|
print("done") |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|