--- license: apache-2.0 base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T tags: - alignment-handbook - trl - sft - generated_from_trainer - trl - sft - generated_from_trainer datasets: - yihanwang617/vicuna_sub_random_90k model-index: - name: tinyllama-sft-vicuna-random-100k results: [] --- # tinyllama-sft-vicuna-random-100k This model is a fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) on the yihanwang617/vicuna_sub_random_90k dataset. It achieves the following results on the evaluation set: - Loss: 0.7502 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 2 - total_train_batch_size: 128 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.7072 | 1.0 | 703 | 0.7502 | ### Framework versions - Transformers 4.39.0.dev0 - Pytorch 2.2.1+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0