--- license: apache-2.0 pipeline_tag: text-to-video ---

Motion Consistency Model: Accelerating Video Diffusion with Disentangled Motion-Appearance Distillation

[[Project page]](https://yhzhai.github.io/mcm/) [[Code]](https://github.com/yhZhai/mcm) [[arXiv]](https://arxiv.org/abs/2406.06890) [[Demo]](https://huggingface.co/spaces/yhzhai/mcm) **TL;DR**: Our motion consistency model not only accelerates text2video diffusion model sampling process, but also can benefit from an additional high-quality image dataset to improve the frame quality of generated videos. ![Our motion consistency model not only distill the motion prior from the teacher to accelerate sampling, but also can benefit from an additional high-quality image dataset to improve the frame quality of generated videos.](https://github.com/yhZhai/mcm/blob/main/static/images/illustration.png?raw=true) ## Usage ```python from typing import Optional import torch from diffusers import ( AnimateDiffPipeline, DiffusionPipeline, LCMScheduler, MotionAdapter, ) from diffusers.utils import export_to_video from peft import PeftModel def main(): # select model_path from ["animatediff-webvid", "animatediff-webvid", # "modelscopet2v-webvid", "modelscopet2v-laion", "modelscopet2v-anime", # "modelscopet2v-real", "modelscopet2v-3d-cartoon"] model_path = "modelscopet2v-laion" prompts = ["A cat walking on a treadmill", "A dog walking on a treadmill"] num_inference_steps = 4 model_id = "yhzhai/mcm" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") if "animatediff" in model_path: pipeline = get_animatediff_pipeline() elif "modelscope" in model_path: pipeline = get_modelscope_pipeline() else: raise ValueError(f"Unknown pipeline {model_path}") lora = PeftModel.from_pretrained( pipeline.unet, model_id, subfolder=model_path, adapter_name="pretrained_lora", torch_device="cpu", ) lora.merge_and_unload() pipeline.unet = lora pipeline = pipeline.to(device) output = pipeline( prompt=prompts, num_frames=16, guidance_scale=1.0, num_inference_steps=num_inference_steps, generator=torch.Generator("cpu").manual_seed(42), ).frames if not isinstance(output, list): output = [output[i] for i in range(output.shape[0])] for j in range(len(prompts)): export_to_video( output[j], f"{j}-{model_path}.mp4", fps=7, ) def get_animatediff_pipeline( real_variant: Optional[str] = "realvision", motion_module_path: str = "guoyww/animatediff-motion-adapter-v1-5-2", ): if real_variant is None: model_id = "runwayml/stable-diffusion-v1-5" elif real_variant == "epicrealism": model_id = "emilianJR/epiCRealism" elif real_variant == "realvision": model_id = "SG161222/Realistic_Vision_V6.0_B1_noVAE" else: raise ValueError(f"Unknown real_variant {real_variant}") adapter = MotionAdapter.from_pretrained( motion_module_path, torch_dtype=torch.float16 ) pipe = AnimateDiffPipeline.from_pretrained( model_id, motion_adapter=adapter, torch_dtype=torch.float16, ) scheduler = LCMScheduler.from_pretrained( model_id, subfolder="scheduler", timestep_scaling=4.0, clip_sample=False, timestep_spacing="linspace", beta_schedule="linear", beta_start=0.00085, beta_end=0.012, steps_offset=1, ) pipe.scheduler = scheduler pipe.enable_vae_slicing() return pipe def get_modelscope_pipeline(): model_id = "ali-vilab/text-to-video-ms-1.7b" pipe = DiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float16, variant="fp16" ) scheduler = LCMScheduler.from_pretrained( model_id, subfolder="scheduler", timestep_scaling=4.0, ) pipe.scheduler = scheduler pipe.enable_vae_slicing() return pipe if __name__ == "__main__": main() ```