--- datasets: - ehartford/dolphin - LinhDuong/chatdoctor-200k - sahil2801/code_instructions_120k - c-s-ale/dolly-15k-instruction-alpaca-format - tiiuae/falcon-refinedweb - bigcode/starcoderdata - togethercomputer/RedPajama-Data-1T language: - en library_name: transformers pipeline_tag: text-generation tags: - instruct - medical - code --- # Model Card for Model ID This model is an instruction-tuned LLaMa model with 33B parameters, with specialities in medical QA and code instruction. ## Model Details - **Model type:** LlamaForCausalLM - **Language(s) (NLP):** English - **License:** As a Llama-derivative, this model cannot be used commercially. - **Finetuned from model (QLoRA):** [huggyllama/llama-30b](https://huggingface.co/huggyllama/llama-30b) ## Training Details ### Training Data Converted the following datasets to alpaca:instruction format. 1. [ehartford/dolphin](https://huggingface.co/datasets/ehartford/dolphin) - ORCA style dataset generously created by [Eric Hartford](https://huggingface.co/ehartford) 2. [LinhDuong/chatdoctor-200k](https://huggingface.co/datasets/LinhDuong/chatdoctor-200k) - Refined dataset sourced from icliniq medical QA forum 3. [sahil2801/code_instructions_120k](https://huggingface.co/datasets/sahil2801/code_instructions_120k) - Code instruction dataset generously created by Sahil Chaudhary from ThreeSixty AI 4. [c-s-ale/dolly-15k-instruction-alpaca-format](https://huggingface.co/datasets/c-s-ale/dolly-15k-instruction-alpaca-format) - Dolly 15k is a general instruction dataset generated by employees of Databricks. ### Training Procedure Trained using [axolotl](https://github.com/OpenAccess-AI-Collective/axolotl) QLoRa on [RunPod](https://www.runpod.io/console/gpu-cloud) 8x A6000 on Community Cloud for 1 epochs (~23 hours - ~$110).
axolotl training config: ```yaml base_model: huggyllama/llama-30b base_model_config: huggyllama/llama-30b model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false push_dataset_to_hub: hub_model_id: hf_use_auth_token: datasets: - path: ehartford/dolphin type: alpaca data_files: - flan1m-alpaca-uncensored.jsonl - flan5m-alpaca-uncensored.jsonl shards: 25 - path: sahil2801/code_instructions_120k type: alpaca - path: LinhDuong/chatdoctor-200k type: alpaca shards: 2 - path: c-s-ale/dolly-15k-instruction-alpaca-format type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.01 adapter: qlora lora_model_dir: sequence_len: 2048 max_packed_sequence_len: 2048 lora_r: 8 lora_alpha: 32 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_mode: true wandb_project: med-orca-instruct-33b wandb_watch: wandb_run_id: wandb_log_model: 'openllama_checkpoint' output_dir: /disk/med-instruct-33b gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 1 optimizer: paged_adamw_32bit torchdistx_path: lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: true fp16: false tf32: true gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 2 xformers_attention: true flash_attention: gptq_groupsize: gptq_model_v1: warmup_steps: 100 eval_steps: 20 save_steps: debug: deepspeed: true weight_decay: 0.00001 special_tokens: bos_token: "" eos_token: "" unk_token: "" ```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_yhyhy3__med-orca-instruct-33b) | Metric | Value | |-----------------------|---------------------------| | Avg. | 25.82 | | ARC (25-shot) | 28.84 | | HellaSwag (10-shot) | 25.63 | | MMLU (5-shot) | 26.5 | | TruthfulQA (0-shot) | 49.26 | | Winogrande (5-shot) | 50.51 | | GSM8K (5-shot) | 0.0 | | DROP (3-shot) | 0.01 |