--- license: apache-2.0 base_model: augmxnt/shisa-base-7b-v1 tags: - axolotl - generated_from_trainer model-index: - name: shisa-7b-v1-sharegpt results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: augmxnt/shisa-base-7b-v1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: false strict: false hub_model_id: yentinglin/shisa-7b-v1-sharegpt hub_strategy: end datasets: - path: NTQAI/sharegpt-clean-ja type: sharegpt conversation: chatml chat_template: chatml dataset_prepared_path: last_run_prepared val_set_size: 0 output_dir: ./output/ja/sft/shisa-7b-v1/sharegpt/ sequence_len: 4096 sample_packing: false eval_sample_packing: false pad_to_sequence_len: true adapter: lora_model_dir: lora_r: lora_alpha: lora_dropout: lora_target_linear: lora_fan_in_fan_out: wandb_project: JA-LLM wandb_entity: wandb_watch: wandb_name: sft-fft-sharegpt-clean-ja wandb_run_id: wandb_log_model: gradient_accumulation_steps: 8 micro_batch_size: 4 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine cosine_min_lr_ratio: 0.1 # decay lr to some percentage of the peak lr, e.g. cosine_min_lr_ratio=0.1 for 10% of peak lr learning_rate: 1e-5 adam_beta1: 0.9 adam_beta2: 0.95 adam_eps: 0.00001 max_grad_norm: 1.0 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 5 xformers_attention: flash_attention: true flash_attn_cross_entropy: false flash_attn_rms_norm: true flash_attn_fuse_qkv: false flash_attn_fuse_mlp: true warmup_ratio: 0.02 # cannot use with warmup_steps evals_per_epoch: 1 eval_table_size: save_per_epoch: 1 save_total_limit: 1 debug: deepspeed: deepspeed_configs/zero1.json # multi-gpu only weight_decay: 0.001 fsdp: fsdp_config: special_tokens: ddp_timeout: 180000 special_tokens: eos_token: "<|im_end|>" tokens: - "<|im_start|>" ```

# shisa-7b-v1-sharegpt This model is a fine-tuned version of [augmxnt/shisa-base-7b-v1](https://huggingface.co/augmxnt/shisa-base-7b-v1) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 8 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 4 ### Training results ### Framework versions - Transformers 4.40.0.dev0 - Pytorch 2.1.2+cu118 - Datasets 2.18.0 - Tokenizers 0.15.0