--- datasets: - FIdo-AI/ua-news language: - uk metrics: - rouge library_name: transformers pipeline_tag: summarization tags: - news --- # Model Card for Model ID ## Model Summary The mT5-multilingual-XLSum model was fine-tuned on the UA-News dataset to generate concise and accurate news headlines in Ukrainian language. ## Training - **Epochs**: 4 - **Batch Size**: 4 - **Learning Rate**: 4e-5 ## Evaluation - **Metrics**: The model's performance on the test set. - **ROUGE-1**: 0.2452 - **ROUGE-2**: 0.1075 - **ROUGE-L**: 0.2348 - **BERTScore**: 0.7573 ## Usage ```python from transformers import pipeline summarizer = pipeline("summarization", model="yelyah/mT5-XLSUM-ua-news") article = "Your news article text here." summary = summarizer(article) print(summary)