--- license: apache-2.0 datasets: - keremberke/license-plate-object-detection language: - en metrics: - accuracy base_model: - Ultralytics/YOLOv8 pipeline_tag: object-detection tags: - yolov8 - fine-tuned - self-driving new_version: yasirfaizahmed/license-plate-object-detection library_name: ultralytics --- --- # YOLOv8 License Plate Detection This project uses the **YOLOv8** object detection model to detect license plates. The dataset used is **Keremberke's License Plate Object Detection** , and the model is trained using the **Ultralytics YOLOv8 framework** . ## Installation Ensure you have the required dependencies installed: ```bash pip install datasets ultralytics opencv-python numpy pandas matplotlib ``` ## Dataset The dataset is loaded from Hugging Face's `datasets` library: ```python from datasets import load_dataset ds = load_dataset("keremberke/license-plate-object-detection", "full") ``` The dataset is split into: - **Training Set** - **Validation Set** - **Test Set** ## Data Preprocessing - Images are extracted from the dataset and saved locally. - Bounding box annotations are converted into **YOLO format** (normalized coordinates). - The dataset is structured into: ```kotlin dataset/ ├── images/ │ ├── train/ │ ├── val/ ├── labels/ │ ├── train/ │ ├── val/ ``` ## Model Training A pre-trained **YOLOv8** model (`yolov8n.pt`) is fine-tuned on the dataset: ```python from ultralytics import YOLO model = YOLO('yolov8n.pt') # Load a small YOLOv8 model results = model.train(data="dataset.yaml", epochs=75, imgsz=640, batch=16) ``` ## Training Configuration - **Epochs** : 75 - **Image Size** : 640x640 - **Batch Size** : 16 ---