--- license: apache-2.0 base_model: bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-finetuned-ner results: [] --- # bert-finetuned-ner This model is a fine-tuned version of [bert-base-cased](https://huggingface.co/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0567 - Precision: 0.9185 - Recall: 0.9421 - F1: 0.9301 - Accuracy: 0.9847 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 439 | 0.0685 | 0.8790 | 0.9219 | 0.9000 | 0.9804 | | 0.1914 | 2.0 | 878 | 0.0636 | 0.9097 | 0.9379 | 0.9236 | 0.9837 | | 0.0474 | 3.0 | 1317 | 0.0567 | 0.9185 | 0.9421 | 0.9301 | 0.9847 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.0 - Datasets 2.18.0 - Tokenizers 0.15.2