--- license: mit tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-finetuned-ner-finetuned-ner results: [] --- # deberta-finetuned-ner-finetuned-ner This model is a fine-tuned version of [baptiste/deberta-finetuned-ner](https://huggingface.co/baptiste/deberta-finetuned-ner) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7964 - Precision: 0.6210 - Recall: 0.3188 - F1: 0.4213 - Accuracy: 0.8212 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 4 | 1.0763 | 0.5583 | 0.1387 | 0.2222 | 0.7916 | | No log | 2.0 | 8 | 0.8910 | 0.8108 | 0.3106 | 0.4491 | 0.8212 | | No log | 3.0 | 12 | 0.7964 | 0.6210 | 0.3188 | 0.4213 | 0.8212 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2