--- library_name: transformers language: - th license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Whisper Large v3 Thai Finetuned results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 17.0 type: mozilla-foundation/common_voice_17_0 config: th split: None args: 'config: th, split: train' metrics: - type: wer value: 37.14119683781068 name: Wer --- # Whisper Large v3 Thai Finetuned This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 17.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2345 - Cer: 10.6496 - Wer: 37.1412 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:------:|:-----:|:---------------:|:--------:|:-------:| | 0.2027 | 0.4873 | 500 | 0.1805 | 107.2858 | 75.0935 | | 0.1674 | 0.9747 | 1000 | 0.1508 | 8.7078 | 41.0794 | | 0.1073 | 1.4620 | 1500 | 0.1506 | 38.7265 | 45.4534 | | 0.1035 | 1.9493 | 2000 | 0.1372 | 10.7331 | 38.5129 | | 0.0587 | 2.4366 | 2500 | 0.1438 | 16.8383 | 50.0563 | | 0.0627 | 2.9240 | 3000 | 0.1397 | 10.6251 | 31.3447 | | 0.0356 | 3.4113 | 3500 | 0.1497 | 7.8515 | 33.7998 | | 0.0367 | 3.8986 | 4000 | 0.1456 | 18.7090 | 37.0359 | | 0.0184 | 4.3860 | 4500 | 0.1606 | 39.3584 | 93.1345 | | 0.0204 | 4.8733 | 5000 | 0.1596 | 8.4796 | 31.7272 | | 0.0112 | 5.3606 | 5500 | 0.1730 | 4.8027 | 25.0106 | | 0.0119 | 5.8480 | 6000 | 0.1697 | 36.5628 | 82.3949 | | 0.0057 | 6.3353 | 6500 | 0.1800 | 17.5990 | 50.1931 | | 0.0052 | 6.8226 | 7000 | 0.1789 | 48.1183 | 98.1247 | | 0.003 | 7.3099 | 7500 | 0.1960 | 15.7676 | 41.7634 | | 0.0028 | 7.7973 | 8000 | 0.1980 | 15.2090 | 54.8407 | | 0.001 | 8.2846 | 8500 | 0.2091 | 21.4387 | 68.7365 | | 0.001 | 8.7719 | 9000 | 0.2175 | 11.7533 | 40.0988 | | 0.0001 | 9.2593 | 9500 | 0.2327 | 13.1280 | 40.6133 | | 0.0001 | 9.7466 | 10000 | 0.2345 | 10.6496 | 37.1412 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1