from typing import  Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
import numpy as np
import os
import torch
import torchvision.transforms as T
from transformers import AutoProcessor, AutoModelForVision2Seq
import cv2

# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
    raise ValueError("need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16

colors = [
    (0, 255, 0),
    (0, 0, 255),
    (255, 255, 0),
    (255, 0, 255),
    (0, 255, 255),
    (114, 128, 250),
    (0, 165, 255),
    (0, 128, 0),
    (144, 238, 144),
    (238, 238, 175),
    (255, 191, 0),
    (0, 128, 0),
    (226, 43, 138),
    (255, 0, 255),
    (0, 215, 255),
    (255, 0, 0),
]

color_map = {
    f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(colors)
}


class EndpointHandler():
    def __init__(self, path=""):
        print("Downloading Model!")
        self.ckpt_id = "ydshieh/kosmos-2-patch14-224"

        self.model = AutoModelForVision2Seq.from_pretrained(self.ckpt_id, trust_remote_code=True).to("cuda")
        self.processor = AutoProcessor.from_pretrained(self.ckpt_id, trust_remote_code=True)
        print("Downloaded Model!")

    def is_overlapping(self, rect1, rect2):
        x1, y1, x2, y2 = rect1
        x3, y3, x4, y4 = rect2
        return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)

    def draw_entity_boxes_on_image(self, image, entities, show=False, save_path=None, entity_index=-1):
        """_summary_
        Args:
            image (_type_): image or image path
            collect_entity_location (_type_): _description_
        """
        if isinstance(image, Image.Image):
            image_h = image.height
            image_w = image.width
            image = np.array(image)[:, :, [2, 1, 0]]
        elif isinstance(image, str):
            if os.path.exists(image):
                pil_img = Image.open(image).convert("RGB")
                image = np.array(pil_img)[:, :, [2, 1, 0]]
                image_h = pil_img.height
                image_w = pil_img.width
            else:
                raise ValueError(f"invaild image path, {image}")
        elif isinstance(image, torch.Tensor):
            # pdb.set_trace()
            image_tensor = image.cpu()
            reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
            reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
            image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
            pil_img = T.ToPILImage()(image_tensor)
            image_h = pil_img.height
            image_w = pil_img.width
            image = np.array(pil_img)[:, :, [2, 1, 0]]
        else:
            raise ValueError(f"invaild image format, {type(image)} for {image}")

        if len(entities) == 0:
            return image

        indices = list(range(len(entities)))
        if entity_index >= 0:
            indices = [entity_index]

        # Not to show too many bboxes
        entities = entities[:len(color_map)]

        new_image = image.copy()
        previous_bboxes = []
        # size of text
        text_size = 1
        # thickness of text
        text_line = 1  # int(max(1 * min(image_h, image_w) / 512, 1))
        box_line = 3
        (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
        base_height = int(text_height * 0.675)
        text_offset_original = text_height - base_height
        text_spaces = 3

        # num_bboxes = sum(len(x[-1]) for x in entities)
        used_colors = colors  # random.sample(colors, k=num_bboxes)

        color_id = -1
        for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities):
            color_id += 1
            if entity_idx not in indices:
                continue
            for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes):
                # if start is None and bbox_id > 0:
                #     color_id += 1
                orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)

                # draw bbox
                # random color
                color = used_colors[color_id]  # tuple(np.random.randint(0, 255, size=3).tolist())
                new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)

                l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1

                x1 = orig_x1 - l_o
                y1 = orig_y1 - l_o

                if y1 < text_height + text_offset_original + 2 * text_spaces:
                    y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
                    x1 = orig_x1 + r_o

                # add text background
                (text_width, text_height), _ = cv2.getTextSize(f"  {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
                text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1

                for prev_bbox in previous_bboxes:
                    while self.is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
                        text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
                        text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
                        y1 += (text_height + text_offset_original + 2 * text_spaces)

                        if text_bg_y2 >= image_h:
                            text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
                            text_bg_y2 = image_h
                            y1 = image_h
                            break

                alpha = 0.5
                for i in range(text_bg_y1, text_bg_y2):
                    for j in range(text_bg_x1, text_bg_x2):
                        if i < image_h and j < image_w:
                            if j < text_bg_x1 + 1.35 * c_width:
                                # original color
                                bg_color = color
                            else:
                                # white
                                bg_color = [255, 255, 255]
                            new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)

                cv2.putText(
                    new_image, f"  {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
                )
                # previous_locations.append((x1, y1))
                previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))

        pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
        if save_path:
            pil_image.save(save_path)
        if show:
            pil_image.show()

        return pil_image


    def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
        """
        :param data: A dictionary contains `inputs` and optional `image` field.
        :return: A dictionary with `image` field contains image in base64.
        """
        image = data.pop("image", None)
        image_input = self.decode_base64_image(image)

        # Save the image and load it again to match the original Kosmos-2 demo.
        # (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346)
        user_image_path = "/tmp/user_input_test_image.jpg"
        image_input.save(user_image_path)

        # This might give different results from the original argument `image_input`
        image_input = Image.open(user_image_path)
        text_input = data.pop("inputs", None)
        if not text_input:
            text_input = "<grounding>Describe this image in detail:"
        else:
            text_input = f"<grounding>{text_input}"

        inputs = self.processor(text=text_input, images=image_input, return_tensors="pt")

        generated_ids = self.model.generate(
            pixel_values=inputs["pixel_values"].to("cuda"),
            input_ids=inputs["input_ids"][:, :-1].to("cuda"),
            attention_mask=inputs["attention_mask"][:, :-1].to("cuda"),
            img_features=None,
            img_attn_mask=inputs["img_attn_mask"][:, :-1].to("cuda"),
            use_cache=True,
            max_new_tokens=512,
        )
        generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

        # By default, the generated  text is cleanup and the entities are extracted.
        processed_text, entities = self.processor.post_process_generation(generated_text)

        annotated_image = self.draw_entity_boxes_on_image(image_input, entities, show=False)

        color_id = -1
        entity_info = []
        filtered_entities = []
        for entity in entities:
            entity_name, (start, end), bboxes = entity
            if start == end:
                # skip bounding bbox without a `phrase` associated
                continue
            color_id += 1
            # for bbox_id, _ in enumerate(bboxes):
                # if start is None and bbox_id > 0:
                #     color_id += 1
            entity_info.append(((start, end), color_id))
            filtered_entities.append(entity)

        colored_text = []
        prev_start = 0
        end = 0
        for idx, ((start, end), color_id) in enumerate(entity_info):
            if start > prev_start:
                colored_text.append((processed_text[prev_start:start], None))
            colored_text.append((processed_text[start:end], f"{color_id}"))
            prev_start = end

        if end < len(processed_text):
            colored_text.append((processed_text[end:len(processed_text)], None))

        return annotated_image, colored_text, str(filtered_entities)

    # helper to decode input image
    def decode_base64_image(self, image_string):
        base64_image = base64.b64decode(image_string)
        buffer = BytesIO(base64_image)
        image = Image.open(buffer).convert("RGB")
        return image