--- library_name: peft pipeline_tag: conversational datasets: - fnlp/moss-003-sft-data ---
[![Generic badge](https://img.shields.io/badge/GitHub-%20XTuner-black.svg)](https://github.com/InternLM/xtuner)
## Model Qwen-7B-qlora-moss-003-sft is fine-tuned from [Qwen-7B](https://huggingface.co/Qwen/Qwen-7B) with [moss-003-sft](https://huggingface.co/datasets/fnlp/moss-003-sft-data) dataset by [XTuner](https://github.com/InternLM/xtuner). ## Quickstart ### Usage with HuggingFace libraries ```python import torch from peft import PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, StoppingCriteria from transformers.generation import GenerationConfig class StopWordStoppingCriteria(StoppingCriteria): def __init__(self, tokenizer, stop_word): self.tokenizer = tokenizer self.stop_word = stop_word self.length = len(self.stop_word) def __call__(self, input_ids, *args, **kwargs) -> bool: cur_text = self.tokenizer.decode(input_ids[0]) cur_text = cur_text.replace('\r', '').replace('\n', '') return cur_text[-self.length:] == self.stop_word tokenizer = AutoTokenizer.from_pretrained('Qwen/Qwen-7B', trust_remote_code=True) quantization_config = BitsAndBytesConfig(load_in_4bit=True, load_in_8bit=False, llm_int8_threshold=6.0, llm_int8_has_fp16_weight=False, bnb_4bit_compute_dtype=torch.float16, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type='nf4') model = AutoModelForCausalLM.from_pretrained('Qwen/Qwen-7B', quantization_config=quantization_config, device_map='auto', trust_remote_code=True).eval() model = PeftModel.from_pretrained(model, 'xtuner/Qwen-7B-qlora-moss-003-sft') gen_config = GenerationConfig(max_new_tokens=512, do_sample=True, temperature=0.1, top_p=0.75, top_k=40) # Note: In this example, we disable the use of plugins because the API depends on additional implementations. # If you want to experience plugins, please refer to XTuner CLI! prompt_template = ( 'You are an AI assistant whose name is Qwen.\n' 'Capabilities and tools that Qwen can possess.\n' '- Inner thoughts: disabled.\n' '- Web search: disabled.\n' '- Calculator: disabled.\n' '- Equation solver: disabled.\n' '- Text-to-image: disabled.\n' '- Image edition: disabled.\n' '- Text-to-speech: disabled.\n' '<|Human|>: {input}\n' '<|Inner Thoughts|>: None\n' '<|Commands|>: None\n' '<|Results|>: None\n') text = '请给我介绍五个上海的景点' inputs = tokenizer(prompt_template.format(input=text), return_tensors='pt') inputs = inputs.to(model.device) pred = model.generate(**inputs, generation_config=gen_config, stopping_criteria=[StopWordStoppingCriteria(tokenizer, '')]) print(tokenizer.decode(pred.cpu()[0], skip_special_tokens=True)) """ 好的,以下是五个上海的景点介绍: 1. 上海博物馆:上海博物馆是中国最大的综合性博物馆之一,收藏了大量的历史文物和艺术品,包括青铜器、陶瓷、书画、玉器等。 2. 上海城隍庙:上海城隍庙是上海最古老的庙宇之一,建于明朝,是上海的标志性建筑之一。庙内有各种神像和文物,是了解上海历史文化的好去处。 3. 上海科技馆:上海科技馆是一座集科技、文化、教育为一体的综合性博物馆,展示了各种科技展品和互动体验项目,适合全家人一起参观。 4. 上海东方明珠塔:上海东方明珠塔是上海的标志性建筑之一,高468米。游客可以乘坐高速电梯到达观景台,欣赏上海的美景。 5. 上海迪士尼乐园:上海迪士尼乐园是中国第一个迪士尼主题公园,拥有各种游乐设施和表演节目,适合全家人一起游玩。 """ ``` ### Usage with XTuner CLI #### Installation ```shell pip install xtuner ``` #### Chat ```shell xtuner chat hf Qwen/Qwen-7B --adapter xtuner/Qwen-7B-qlora-moss-003-sft --bot-name Qwen --prompt-template moss_sft --with-plugins calculate solve search --command-stop-word "" --answer-stop-word "" ``` #### Fine-tune Use the following command to quickly reproduce the fine-tuning results. ```shell NPROC_PER_NODE=8 xtuner train qwen_7b_qlora_moss_sft_all_e2_gpu8 ```