import sys from train.datasets import COCOFlickrDataset, ImageNetDataset from CLIP_eval.eval_utils import load_clip_model sys.path.append("open_flamingo") import os import shutil import time import string import random import numpy as np import open_clip import torch import torch.nn.functional as F from torch.utils.data import DataLoader from training.scheduler import cosine_lr from torchvision import transforms from open_flamingo.eval.classification_utils import IMAGENET_1K_CLASS_ID_TO_LABEL from train.pgd_train import pgd from train.apgd_train import apgd_train as apgd import wandb from train.utils import init_wandb, AverageMeter from train.sam_data import SamData from open_flamingo.eval.models.utils import unwrap_model from train.utils import str2bool import argparse from slots.DINOSAUR import DINOSAURpp import matplotlib.pyplot as plt from einops import rearrange, repeat from IPG.IPG_arch import IPG parser = argparse.ArgumentParser() parser.add_argument('--clip_model_name', type=str, default='ViT-L-14', help='ViT-L-14, ViT-B-32') parser.add_argument('--pretrained', type=str, default='openai') parser.add_argument('--dataset', type=str, default='imagenet') parser.add_argument('--template', type=str, default='std') parser.add_argument('--imagenet_root', type=str, default='/mnt/datasets/imagenet', help='Imagenet dataset root directory') parser.add_argument('--output_normalize', type=str2bool, default=False, help='Whether the embedding is normalized') parser.add_argument('--start_step', type=int, default=0, help='Start step for training') parser.add_argument('--optimizer_state', type=str, default='', help='Optimizer state file path') parser.add_argument('--steps', type=int, default=20000, help='Number of training steps') parser.add_argument('--warmup', type=int, default=14000, help='Warmup steps') parser.add_argument('--batch_size', type=int, default=256) parser.add_argument('--loss', type=str, default='l2', help='ce, l2') parser.add_argument('--loss_clean', type=str, default='none', help='ce, l2') parser.add_argument('--clean_weight', type=float, default=0., help='Weight for clean loss') parser.add_argument('--trades', type=str2bool, default=False, help='Use TRADES') parser.add_argument('--opt', type=str, default='adamw', help='Optimizer type; sgd, adamw') parser.add_argument('--momentum_sgd', type=float, default=0.9, help='Momentum for SGD optimizer') parser.add_argument('--lr', type=float, default=1e-5, help='Learning rate') parser.add_argument('--wd', type=float, default=1e-4, help='Weight decay') parser.add_argument('--attack', type=str, default='apgd', help='Adversarial attack type') parser.add_argument('--inner_loss', type=str, default='l2', help='Inner loss function for adversarial training') parser.add_argument('--norm', type=str, default='linf', help='Norm for adversarial perturbation') parser.add_argument('--eps', type=float, default=4, help='Epsilon for adversarial perturbation') parser.add_argument('--iterations_adv', type=int, default=10, help='Iterations for adversarial attack') parser.add_argument('--stepsize_adv', type=float, default=1., help='Step size for adversarial attack (no effect for apgd)') parser.add_argument('--wandb', type=str2bool, default=True, help='Use Weights & Biases for logging') parser.add_argument('--experiment_name', type=str, default='') parser.add_argument('--overwrite', type=str2bool, default=False, help='Overwrite existing directory') parser.add_argument('--log_freq', type=int, default=1, help='Logging frequency') parser.add_argument('--eval_freq', type=int, default=50, help='Evaluation frequency') parser.add_argument('--output_dir', type=str, default='', help='Output directory') parser.add_argument('--save_checkpoints', type=str2bool, default=True, help='Save 10 training checkpoints') parser.add_argument('--devices', type=str, default='', help='Device IDs for CUDA') ######################################### For object-centric relation reasoning add ########################### parser.add_argument('--slots_ckp', type=str, default='/home/tly/RobustVLM/output_slots/ViT-L-14_openai_imagenet_l2_imagenet_SLOTS_NbrnT/checkpoints/fallback_390200.pt', help='slots model ckp root directory') def main(args): # setup wandb if args.wandb: init_wandb( project_name='clip-finetune', model_name=args.finetuned_model_name, config=vars(args) ) else: wandb.init(mode='disabled') # print args print(f"Arguments:\n{'-' * 20}") for arg, value in vars(args).items(): print(f"{arg}: {value}") print(f"{'-' * 20}") # setup dirs if args.overwrite: shutil.rmtree(args.output_dir, ignore_errors=True) os.makedirs(os.path.join(args.output_dir, 'checkpoints'), exist_ok=False) # write args to file with open(os.path.join(args.output_dir, 'args.txt'), 'w') as f: f.write(str(args)) main_device = 0 # get models model_orig, _, image_processor = open_clip.create_model_and_transforms( args.clip_model_name, pretrained='openai' # 可选 output_tokens=True,返回token + patches ) if args.optimizer_state != '': assert args.start_step > 0 assert str(args.start_step) in args.optimizer_state assert args.pretrained in ['', 'none'] args.pretrained = args.optimizer_state.replace('_opt', '') args.pretrained_proj_head = args.optimizer_state.replace('_opt', '_proj_head') model, _, _ = load_clip_model(args.clip_model_name, args.pretrained) # Remove the Normalize transform by creating a new Compose object preprocessor_without_normalize = transforms.Compose(image_processor.transforms[:-1]) normalize = image_processor.transforms[-1] del image_processor print(f'[preprocessor_without_normalize] {preprocessor_without_normalize}') print(f'[normalize] {normalize}') # preprocessor_without_normalize contains following transforms: # - Resize(size=224, interpolation=bicubic, max_size=None, antialias=warn) # - CenterCrop(size=(224, 224)) # - ToTensor() # normalize: # Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) ####################################################### get slot-attention model ######################################################### cfg_dict = {'slot_dim': 256, 'num_slots': 10, 'token_num': 256, 'ISA': False, 'slot_att_iter': 3, 'query_opt': False} model_slots = DINOSAURpp(cfg_dict) # proj_head = torch.nn.Linear(256, 1024) # slot-num to slot-num # add for IPG upscale = 1 height = (8 // upscale) width = (8 // upscale) proj_head = IPG( upscale=upscale, in_chans=64, out_chans=64, img_size=(height, width), window_size=2, img_range=1., depths=[2, 2], embed_dim=256, num_heads=[8, 8], mlp_ratio=4, upsampler='sam', resi_connection='1conv', graph_flags=[1, 1], stage_spec=[['GN', 'GS'], ['GN', 'GS']], dist_type='cossim', top_k=256, head_wise=0, sample_size=4, graph_switch=1, flex_type='interdiff_plain', FFNtype='basic-dwconv3', conv_scale=0, conv_type='dwconv3-gelu-conv1-ca', diff_scales=[1.5, 1.5], fast_graph=1 ) if args.optimizer_state != '': proj_head.load_state_dict(torch.load(args.pretrained_proj_head)) if args.slots_ckp != '': model_slots.load_state_dict(torch.load(args.slots_ckp)) # get data if args.dataset == 'imagenet': dataset = ImageNetDataset( root=args.imagenet_root + '/train', transform=preprocessor_without_normalize, ) elif args.dataset == 'segment_anything': dataset = SamData('/data/naman_deep_singh/datasets/newSAM', transform=preprocessor_without_normalize) print(dataset.__len__()) elif args.dataset == 'coco': if os.path.exists('/mnt/datasets/coco'): image_dir_path = '/mnt/datasets/coco/train2017' annotations_path = '/mnt/datasets/coco/annotations/captions_train2017.json' elif os.path.exists('/mnt/lustre'): image_dir_path = '/mnt/lustre/hein/cschlarmann37/datasets/coco/train2017' annotations_path = '/mnt/lustre/hein/cschlarmann37/datasets/coco/annotations/captions_train2017.json' else: raise ValueError('COCO dataset not found') dataset = COCOFlickrDataset( image_dir_path=image_dir_path, annotations_path=annotations_path, transform=preprocessor_without_normalize ) dataset_eval = ImageNetDataset( root=args.imagenet_root + '/val', transform=preprocessor_without_normalize, ) dataloader = DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=8, drop_last=True) dataloader_eval = DataLoader(dataset_eval, batch_size=args.batch_size, shuffle=True, num_workers=8, drop_last=True) # Get text label embeddings of all ImageNet classes if args.template == 'std': template = 'This is a photo of a {}' elif args.template == 'blurry': template = 'This is a blurry photo of a {}' else: raise ValueError(f'Unknown template: {args.template}') print(f'template: {template}') texts = [template.format(c) for c in IMAGENET_1K_CLASS_ID_TO_LABEL.values()] text_tokens = open_clip.tokenize(texts) model_orig.to(main_device) with torch.no_grad(): embedding_text_labels_norm = [] for el in (text_tokens[:500], text_tokens[500:]): # we need to split the text tokens into two batches because otherwise we run out of memory # note that we are accessing the model directly here, not the CustomModel wrapper # thus its always normalizing the text embeddings embedding_text_labels_norm.append( model_orig.encode_text(el.to(main_device), normalize=True).detach().cpu() ) embedding_text_labels_norm = torch.cat(embedding_text_labels_norm).T.to(main_device) assert torch.allclose( F.normalize(embedding_text_labels_norm, dim=0), embedding_text_labels_norm ) if args.clip_model_name == 'ViT-B-32': assert embedding_text_labels_norm.shape == (512, 1000), embedding_text_labels_norm.shape elif args.clip_model_name in ('ViT-L-14', 'ViT-L-14-336'): assert embedding_text_labels_norm.shape == (768, 1000), embedding_text_labels_norm.shape else: raise ValueError(f'Unknown model: {args.clip_model_name}') model_orig.cpu() model_orig = ClipVisionModel(model=model_orig.visual, args=args, normalize=normalize) if num_gpus > 1: model_orig = torch.nn.DataParallel(model_orig) model_orig.cuda() model = ClipVisionModel(model=model.visual, args=args, normalize=normalize) if num_gpus > 1: model = torch.nn.DataParallel(model) model.cuda() ####################################################### get slot-attention model ######################################################### model_slots = model_slots if num_gpus > 1: model_slots = torch.nn.DataParallel(model_slots) proj_head = torch.nn.DataParallel(proj_head) model_slots.cuda() proj_head.cuda() # set optimizer (all params have requires_grad=True) params = unwrap_model(model).model.parameters() params_head = unwrap_model(proj_head).parameters() if args.opt == 'adamw': optimizer = torch.optim.AdamW( [{'params': params}, {'params': params_head}], lr=args.lr, weight_decay=args.wd) elif args.opt == 'sgd': optimizer = torch.optim.SGD( params, lr=args.lr, momentum=args.momentum_sgd, weight_decay=args.wd ) else: raise ValueError(f'Optimizer {args.optimizer} not supported.') if args.optimizer_state != '': optimizer.load_state_dict(torch.load(args.optimizer_state)) # set scheduler scheduler = cosine_lr(optimizer, args.lr, args.warmup, args.steps) # compute amount of epochs total_epochs = args.steps / len(dataloader) print(f'train for {total_epochs} epochs') args.total_epochs = total_epochs # finetune step_total = args.start_step epoch = 0 while step_total < args.steps: step_total = train_one_epoch( step_total, model=model, model_orig=model_orig, model_slots=model_slots, proj_head=proj_head, dataloader=dataloader, dataloader_eval=dataloader_eval, optimizer=optimizer, scheduler=scheduler, embedding_text_labels_norm=embedding_text_labels_norm, normalize=normalize, args=args, epoch=epoch ) print(f'Epoch {epoch} done.') epoch += 1 # save final model torch.save(unwrap_model(model).model.state_dict(), f'{args.output_dir}/checkpoints/final.pt') torch.save(unwrap_model(proj_head).state_dict(), f'{args.output_dir}/checkpoints/final_proj_head.pt') torch.save(optimizer.state_dict(), f'{args.output_dir}/checkpoints/final_opt.pt') if args.output_dir.endswith('_temp'): # rename temp dir to final dir os.rename(args.output_dir, args.output_dir[:-5]) class ClipVisionModel(torch.nn.Module): def __init__(self, model, args, normalize): super().__init__() self.model = model self.args = args self.normalize = normalize def forward(self, vision, output_normalize, return_all_blocks=True, need_OT=False, object_token=None): vision = self.normalize(vision) embedding, patches = self.model(vision, return_all_blocks=return_all_blocks, need_OT=need_OT, object_token=object_token) if output_normalize: embedding = F.normalize(embedding, dim=-1) return embedding, patches class ComputeLossWrapper: def __init__(self, embedding_orig, embedding_text_labels_norm, reduction='mean', loss=None, logit_scale=100.): self.embedding_orig = embedding_orig self.embedding_text_labels_norm = embedding_text_labels_norm self.reduction = reduction self.loss_str = loss self.logit_scale = logit_scale def __call__(self, embedding, targets): return compute_loss( loss_str=self.loss_str, embedding=embedding, targets=targets, embedding_orig=self.embedding_orig, logit_scale=self.logit_scale, embedding_text_labels_norm=self.embedding_text_labels_norm, reduction=self.reduction ) def train_one_epoch( step_total, model, model_orig, model_slots, proj_head, dataloader, optimizer, scheduler, normalize, embedding_text_labels_norm, args, epoch, dataloader_eval=None ): model_orig.eval() model.train() model_slots.eval() proj_head.train() loss_meter = AverageMeter('loss') cos_sim_meter = AverageMeter('cos-sim') acc_meter = AverageMeter('acc') racc_meter = AverageMeter('racc') epoch_start_time = time.time() for i, (data, targets) in enumerate(dataloader): is_classification = isinstance(targets, torch.Tensor) data = data.cuda() n_samples = data.shape[0] if is_classification: targets = targets.cuda() with torch.no_grad(): embedding_orig, patches_orig = model_orig(vision=data, output_normalize=args.output_normalize) reconstruction, slots, masks, x_dinov2 = model_slots(patches_orig) # (B, token, 768) with torch.no_grad(): b, hw, c = reconstruction.shape h = int(pow(hw, 0.5)) w = h k = masks.size(1) reconstruction = rearrange(reconstruction, 'b (h w) c -> b c h w', h=h, w=w) masks = rearrange(masks, 'b k (h w) -> b k h w', h=h, w=w) masks_recon_feat = torch.einsum('b k h w, b c h w -> b k c', masks, reconstruction) masks_recon_feat = masks_recon_feat.repeat(1, k, 1) b, hw, c = masks_recon_feat.shape h = int(pow(hw, 0.5)) w = h sim = F.cosine_similarity(masks_recon_feat[:,None, :, :], masks_recon_feat[:,:, None, :], dim=-1).mean(-1) sim = rearrange(sim, 'b (h w) -> b h w', h=h, w=w) top_values, top_indices = torch.topk(sim[:, 1], k-2) maxsim_idx = torch.argmax(sim[:, 1], dim=-1) top_indices_slos = top_indices.unsqueeze(-1).repeat(1,1,slots.size(-1)) top_indices_sim = top_indices.unsqueeze(-1).repeat(1,1,k-2) h, w = k-2, k-2 slots = torch.gather(slots, dim=1, index=top_indices_slos) sim = torch.gather(sim, dim=1, index=top_indices_sim) slot_tokens = slots.repeat(1, k-2, 1) slot_tokens = rearrange(slot_tokens, 'b (h w) c -> b c h w', h=h, w=w) b, c, h, w = slot_tokens.shape object_token = proj_head(slot_tokens, sim_matric=sim) # object_token = proj_head(slots) # loss for the attack loss_inner_wrapper = ComputeLossWrapper( embedding_orig, embedding_text_labels_norm, reduction='none' if args.attack == 'apgd' else 'mean', loss=args.inner_loss, logit_scale=100. ) model.eval() if args.attack == 'pgd': data_adv = pgd( forward=model, loss_fn=loss_inner_wrapper, data_clean=data, targets=targets, norm=args.norm, eps=args.eps, iterations=args.iterations_adv, stepsize=args.stepsize_adv, output_normalize=args.output_normalize, perturbation=torch.zeros_like(data).uniform_(-args.eps, args.eps).requires_grad_(True), mode='max', verbose=False, need_OT = False ) elif args.attack == 'apgd': # apgd currently always applies output normalization data_adv = apgd( model=model, loss_fn=loss_inner_wrapper, x=data, y=targets, norm=args.norm, eps=args.eps, n_iter=args.iterations_adv, verbose=True ) elif args.attack == 'none': data_adv = data del loss_inner_wrapper model.train() embedding_clean, patches_clean = model(data, output_normalize=args.output_normalize) if args.clean_weight > 0.: loss_clean = compute_loss( loss_str=args.loss_clean, embedding=embedding_clean, targets=targets, embedding_orig=embedding_orig, logit_scale=100., embedding_text_labels_norm=None ) else: loss_clean = 0. embedding_adv, patches_adv = model(data_adv, output_normalize=args.output_normalize, need_OT=True, object_token=object_token) del data, data_adv if args.trades: embedding_clean_no_grad = embedding_clean.detach().clone() embedding_orig.cpu() loss = compute_loss( loss_str=args.loss, embedding=embedding_adv, targets=targets, embedding_orig=embedding_orig if not args.trades else embedding_clean_no_grad, logit_scale=100., embedding_text_labels_norm=embedding_text_labels_norm ) loss_total = args.clean_weight * loss_clean + (1 - args.clean_weight) * loss loss_total.backward() optimizer.step() optimizer.zero_grad() step_total += 1 scheduler(step_total) with torch.no_grad(): # only for logging embedding_orig.cuda() cos_sim_clean = F.cosine_similarity(embedding_clean, embedding_orig, dim=1).mean() cos_sim = F.cosine_similarity(embedding_adv, embedding_orig, dim=1).mean() if is_classification: logits_adv = embedding_adv @ embedding_text_labels_norm racc = compute_acc(logits_adv, targets) embedding_clean_norm = F.normalize(embedding_clean, dim=1) logits_clean = embedding_clean_norm @ embedding_text_labels_norm acc = compute_acc(logits_clean, targets) acc_meter.update(acc, n_samples) racc_meter.update(racc, n_samples) del embedding_clean_norm, embedding_clean else: acc = None racc = None loss_meter.update(loss.item(), n_samples) cos_sim_meter.update(cos_sim.item(), n_samples) eval_logs = dict() if (step_total-1) % args.eval_freq == 0: # we compute acc and racc (against supervised apgd) on validation data model.eval() data_eval, targets_eval = next(iter(dataloader_eval)) data_eval, targets_eval = data_eval.cuda(), targets_eval.cuda() loss_eval_wrapper = ComputeLossWrapper( embedding_orig=None, embedding_text_labels_norm=embedding_text_labels_norm, reduction='none', loss='ce', logit_scale=100. ) data_eval_adv = apgd( model=model, loss_fn=loss_eval_wrapper, x=data_eval, y=targets_eval, norm=args.norm, eps=args.eps, n_iter=50, initial_stepsize=0.05 * args.eps if args.clean_weight > 0 else None, verbose=False ) with torch.no_grad(): embedding_adv_eval_norm, patches_adv_eval_norm = model(data_eval_adv, output_normalize=True) # we set output_normalize to True logits_eval_adv = embedding_adv_eval_norm @ embedding_text_labels_norm racc_eval = compute_acc(logits_eval_adv, targets_eval) embedding_eval_norm, patches_adv_eval_norm = model(data_eval, output_normalize=True) logits_eval = embedding_eval_norm @ embedding_text_labels_norm acc_eval = compute_acc(logits_eval, targets_eval) # note we compute the cosine sim between clean and adv embedding, # not between orig and adv embedding as for training cos_sim_eval = F.cosine_similarity(embedding_adv_eval_norm, embedding_eval_norm, dim=1).mean() eval_logs['eval/racc'] = racc_eval eval_logs['eval/acc'] = acc_eval eval_logs['eval/cos-sim'] = cos_sim_eval print(f'[eval-acc] {acc_eval:.2f} [eval-racc] {racc_eval:.2f} [eval-cos-sim] {cos_sim_eval:.3f}') model.train() del data_eval_adv, data_eval, targets_eval, embedding_adv_eval_norm, logits_eval_adv, embedding_eval_norm, logits_eval lr_ = optimizer.param_groups[0].get('lr') if (step_total-1) % args.log_freq == 0: log_str = f'[step] {step_total} [lr] {lr_:.6f} [loss] {loss.item():.6f} [cos-sim] {cos_sim.item():.3f}' if is_classification: log_str += f' [acc] {acc:.2f} [racc] {racc:.2f}' print(log_str) log_data = { 'step': step_total, 'lr': lr_, 'loss': loss.item(), 'loss-total': loss_total.item(), 'cos-sim-clean': cos_sim_clean.item(), 'cos-sim': cos_sim.item(), 'acc': acc, 'racc': racc, 'avg/loss': loss_meter.avg, 'avg/cos-sim': cos_sim_meter.avg, 'avg/acc': acc_meter.avg, 'avg/racc': racc_meter.avg, } log_data.update(eval_logs) if (step_total-1) % (args.log_freq * 10) == 0: # compute expected average epoch time in hours batch_average_time = (time.time() - epoch_start_time) / (i + 1) / (60**2) epoch_average_time = batch_average_time * len(dataloader) this_epoch_remaining = epoch_average_time - \ (time.time() - epoch_start_time) / 60**2 total_remaining = epoch_average_time * (args.total_epochs - epoch - i / len(dataloader)) print(f'[epoch average time] {epoch_average_time:.2f} [this epoch remaining] ' f'{this_epoch_remaining:.2f} [total remaining] {total_remaining:.2f}') log_data.update({ 'time/total-remaining': total_remaining, 'time/this-epoch-remaining': this_epoch_remaining, 'time/epoch-average-time': epoch_average_time, 'time/batch-average-time': batch_average_time, 'other/epoch': epoch + i / len(dataloader), }) wandb.log(log_data) # save 10 models over the course of training if args.save_checkpoints and (step_total % (args.steps // 10) == 0): # save model and optimizer state_dict torch.save(unwrap_model(model).model.state_dict(), f'{args.output_dir}/checkpoints/step_{step_total}.pt') torch.save(unwrap_model(proj_head).state_dict(), f'{args.output_dir}/checkpoints/step_{step_total}_proj_head.pt') torch.save(optimizer.state_dict(), f'{args.output_dir}/checkpoints/step_{step_total}_opt.pt') # every 200 steps, save a fallback model, which gets overwritten if step_total % 2000 == 0: torch.save(unwrap_model(model).model.state_dict(), f'{args.output_dir}/checkpoints/fallback_{step_total}.pt') torch.save(unwrap_model(proj_head).state_dict(), f'{args.output_dir}/checkpoints/fallback_{step_total}_proj_head.pt') torch.save(optimizer.state_dict(), f'{args.output_dir}/checkpoints/fallback_{step_total}_opt.pt') # remove old fallback models for file in os.listdir(f'{args.output_dir}/checkpoints'): if file.startswith('fallback') and not str(step_total) in file: os.remove(f'{args.output_dir}/checkpoints/{file}') if step_total >= args.steps: break # torch.cuda.empty_cache() return step_total @torch.no_grad() def compute_acc(logits, targets): preds_clean = logits.max(dim=1)[1].detach() acc = (preds_clean.eq(targets).sum() / targets.shape[0]).item() * 100 return acc def compute_loss(loss_str, embedding, targets, embedding_orig, logit_scale, embedding_text_labels_norm=None, reduction='mean'): if loss_str == 'l2': loss = l2(out=embedding, targets=embedding_orig, reduction=reduction) elif loss_str == 'ce': loss = ce( out=embedding @ (logit_scale * embedding_text_labels_norm), targets=targets, reduction=reduction ) else: raise ValueError(f'loss {loss_str} not supported') return loss def l2(out, targets, reduction='none'): # squared l2 - it does not divide by the latent dimension # should have shape (batch_size, embedding_size) assert out.shape == targets.shape, f'{out.shape} != {targets.shape}' assert out.shape[0] > 1 # Compute the element-wise squared error squared_error_batch = F.mse_loss(out, targets, reduction='none') if reduction == 'mean': squared_error_batch = torch.mean(squared_error_batch.sum(dim=1)) else: squared_error_batch = squared_error_batch.sum(dim=1) assert squared_error_batch.shape == (out.shape[0],), f'{squared_error_batch.shape} != {(out.shape[0],)}' return squared_error_batch def ce(out, targets, reduction='mean'): # out = logits assert out.shape[0] == targets.shape[0], (out.shape, targets.shape) assert out.shape[0] > 1 return F.cross_entropy(out, targets, reduction=reduction) if __name__ == '__main__': # set seeds torch.manual_seed(0) np.random.seed(0) # Parse command-line arguments args = parser.parse_args() args.eps /= 255 args.stepsize_adv /= 255 # make sure there is no string in args that should be a bool assert not any([isinstance(x, str) and x in ['True', 'False'] for x in args.__dict__.values()]), f'args contains a string that should be a bool: {args}' assert args.eval_freq % args.log_freq == 0, 'eval_freq must be a multiple of log_freq' if args.devices != '': # set cuda visible devices os.environ['CUDA_VISIBLE_DEVICES'] = args.devices num_gpus = torch.cuda.device_count() if num_gpus > 1: print(f'Number of GPUs available: {num_gpus}') else: print('No multiple GPUs available.') # set model name and output dir random_str = ''.join(random.choices(string.ascii_letters + string.digits, k=5)) args.finetuned_model_name = f'{args.clip_model_name}_{args.pretrained}_{args.dataset}_{args.loss}_{args.dataset}_{args.experiment_name}_{random_str}' args.finetuned_model_name = args.finetuned_model_name.replace('/', '_') args.output_dir = os.path.join(args.output_dir, args.finetuned_model_name) # run main(args)