--- license: apache-2.0 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert-mrpc results: - task: name: Text Classification type: text-classification dataset: name: glue type: glue config: mrpc split: validation args: mrpc metrics: - name: Accuracy type: accuracy value: 0.8553921568627451 - name: F1 type: f1 value: 0.8987993138936535 --- # bert-mrpc This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the glue dataset. It achieves the following results on the evaluation set: - Loss: 0.6473 - Accuracy: 0.8554 - F1: 0.8988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 459 | 0.3845 | 0.8480 | 0.8920 | | 0.5092 | 2.0 | 918 | 0.4326 | 0.8578 | 0.9033 | | 0.3024 | 3.0 | 1377 | 0.6473 | 0.8554 | 0.8988 | ### Framework versions - Transformers 4.28.0 - Pytorch 2.0.0+cu118 - Datasets 2.12.0 - Tokenizers 0.13.3