for k in 1 2 3 5 10 do python finetune_custom.py \ --mode full \ --k $k \ --batch_size 64 \ --num_epochs 200 \ --checkpoint './checkpoint/UniMTS.pth' \ --X_train_path 'UniMTS_data/TNDA-HAR/X_train.npy' \ --y_train_path 'UniMTS_data/TNDA-HAR/y_train.npy' \ --X_test_path 'UniMTS_data/TNDA-HAR/X_test.npy' \ --y_test_path 'UniMTS_data/TNDA-HAR/y_test.npy' \ --config_path 'UniMTS_data/TNDA-HAR/TNDA-HAR.json' \ --joint_list 20 2 21 3 11 \ --original_sampling_rate 50 \ --num_class 8 done python finetune_custom.py \ --mode full \ --batch_size 64 \ --num_epochs 200 \ --checkpoint './checkpoint/UniMTS.pth' \ --X_train_path 'UniMTS_data/TNDA-HAR/X_train.npy' \ --y_train_path 'UniMTS_data/TNDA-HAR/y_train.npy' \ --X_test_path 'UniMTS_data/TNDA-HAR/X_test.npy' \ --y_test_path 'UniMTS_data/TNDA-HAR/y_test.npy' \ --config_path 'UniMTS_data/TNDA-HAR/TNDA-HAR.json' \ --joint_list 20 2 21 3 11 \ --original_sampling_rate 50 \ --num_class 8