import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import argparse import os import numpy as np import clip import wandb import datetime import torch.optim as optim from data import CLIPDataset from utils import augment_data from contrastive import ContrastiveModule def main(args): train_dataset = CLIPDataset(args) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=args.batch_size, shuffle=True, num_workers=8, pin_memory=True) date = datetime.datetime.now().strftime("%d-%m-%y_%H:%M") wandb.init( project='UniMTS', name=f"{args.run_tag}_{args.stage}_" + f"{date}" ) model = ContrastiveModule(args).cuda() optimizer = optim.Adam(model.parameters(), lr=1e-4) save_path = './checkpoint/%s/' % args.run_tag if not os.path.exists(save_path): os.makedirs(save_path) for epoch in range(args.num_epochs): tol_loss = 0 model.train() for i, batch in enumerate(train_loader): inputs_imu = batch['imu'].float().cuda() inputs_text = clip.tokenize(batch['text'], truncate=True).cuda() mask = batch['mask'].float().cuda() input = inputs_imu * mask # rotation invariant if args.aug: input = augment_data(input) if not args.gyro: b, t, c = input.shape indices = np.array([range(i, i+3) for i in range(0, c, 6)]).flatten() input = input[:,:,indices] b, t, c = input.shape if args.stft: input_stft = input.permute(0,2,1).reshape(b * c,t) input_stft = torch.abs(torch.stft(input_stft, n_fft = 25, hop_length = 28, onesided = False, center = True, return_complex = True)) input_stft = input_stft.reshape(b, c, input_stft.shape[-2], input_stft.shape[-1]).reshape(b, c, t).permute(0,2,1) input = torch.cat((input, input_stft), dim=-1) input = input.reshape(b, t, 22, -1).permute(0, 3, 1, 2).unsqueeze(-1) # IMU and text representations logits_per_imu, logits_per_text = model(input, inputs_text) # positive keys are the entries on the diagonal labels = torch.arange(len(batch['imu'])).cuda() loss = F.cross_entropy(logits_per_imu / args.temperature, labels, reduction="mean") optimizer.zero_grad() loss.backward() optimizer.step() tol_loss += len(inputs_imu) * loss.item() # print(epoch, i, loss.item()) print(f'Epoch [{epoch+1}/{args.num_epochs}], Loss: {tol_loss / len(train_dataset):.4f}') wandb.log({'loss': tol_loss / len(train_dataset)}) if epoch > 0 and epoch % args.log == 0: torch.save(model.model.state_dict(), os.path.join(save_path, f'epoch_{epoch}.pth')) if __name__ == "__main__": parser = argparse.ArgumentParser(description='Unified Pre-trained Motion Time Series Model') # data parser.add_argument('--padding_size', type=int, default='200', help='padding size (default: 200)') parser.add_argument('--sample', type=float, default='1', help='pre-training down-sample ratio (default: 1)') parser.add_argument('--data_path', type=str, default='./data/', help='/path/to/data/') # training parser.add_argument('--run_tag', type=str, default='exp0', help='logging tag') parser.add_argument('--stage', type=str, default='pretrain', help='training stage') parser.add_argument('--num_epochs', type=int, default=100, help='number of pre-training epochs') parser.add_argument('--gyro', type=int, default=0, help='using gyro or not') parser.add_argument('--stft', type=int, default=0, help='using stft or not') parser.add_argument('--aug', type=int, default=1, help='using augmentation or not') parser.add_argument('--batch_size', type=int, default=64, help='batch size') parser.add_argument('--temperature', type=float, default=0.1, help='temperature') parser.add_argument('--log', type=int, default=10, help='logging step') args = parser.parse_args() main(args)