--- license: apache-2.0 --- # ***State of the art ControlNet-openpose-sdxl-1.0 model, not limited to anime, just for show*** ![images](./masonry0.webp) ### Examples ![images0](./000001_scribble_concat.webp) ![images1](./000003_scribble_concat.webp) ![images2](./000005_scribble_concat.webp) ![images3](./000008_scribble_concat.webpp) ![images4](./000015_scribble_concat.webp) ![images5](./000031_scribble_concat.webp) ![images6](./000042_scribble_concat.webp) ![images7](./000047_scribble_concat.webp) ![images8](./000048_scribble_concat.webp) ![images9](./000083_scribble_concat.webp) ## How to Get Started with the Model Use the code below to get started with the model. ```python from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers import DDIMScheduler, EulerAncestralDiscreteScheduler from controlnet_aux import OpenposeDetector from PIL import Image import torch import numpy as np import cv2 controlnet_conditioning_scale = 1.0 prompt = "your prompt, the longer the better, you can describe it as detail as possible" negative_prompt = 'longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality' eulera_scheduler = EulerAncestralDiscreteScheduler.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", subfolder="scheduler") controlnet = ControlNetModel.from_pretrained( "xinsir/controlnet-openpose-sdxl-1.0", torch_dtype=torch.float16 ) # when test with other base model, you need to change the vae also. vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16) pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, safety_checker=None, torch_dtype=torch.float16, scheduler=eulera_scheduler, ) processor = OpenposeDetector.from_pretrained('lllyasviel/ControlNet') controlnet_img = cv2.imread("your image path") controlnet_img = processor(controlnet_img, hand_and_face=False, output_type='cv2') # need to resize the image resolution to 1024 * 1024 or same bucket resolution to get the best performance height, width, _ = controlnet_img.shape ratio = np.sqrt(1024. * 1024. / (width * height)) new_width, new_height = int(width * ratio), int(height * ratio) controlnet_img = cv2.resize(controlnet_img, (new_width, new_height)) controlnet_img = Image.fromarray(controlnet_img) images = pipe( prompt, negative_prompt=negative_prompt, image=controlnet_img, controlnet_conditioning_scale=controlnet_conditioning_scale, width=new_width, height=new_height, num_inference_steps=30, ).images images[0].save(f"your image save path, png format is usually better than jpg or webp in terms of image quality but got much bigger") ``` ## Evaluation Data HumanArt [https://github.com/IDEA-Research/HumanArt], select 2000 images with ground truth pose annotations to generate images and calculate mAP. ## Quantitative Result | metric | xinsir/controlnet-openpose-sdxl-1.0 | lllyasviel/control_v11p_sd15_openpose | thibaud/controlnet-openpose-sdxl-1.0 | |-------|-------|-------|-------| | mAP | **0.357** | 0.326 | 0.209 | We are the SOTA openpose model compared with other opensource models.