# coding=utf-8 # Copyright 2023 The Meta AI Authors and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ TensorFlow SAM model. This file was mostly generated by auto-translation from the PyTorch original. In the event of a discrepancy, the original file should be regarded as the 'reference' version. """ from __future__ import annotations import collections from dataclasses import dataclass from typing import Dict, List, Optional, Tuple, Union import numpy as np import tensorflow as tf from transformers.activations_tf import ACT2FN from transformers.modeling_tf_outputs import TFBaseModelOutput from transformers.modeling_tf_utils import TFModelInputType, TFPreTrainedModel, shape_list, unpack_inputs from transformers.tf_utils import flatten, functional_layernorm from transformers.utils import ModelOutput, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_sam import SamConfig, SamMaskDecoderConfig, SamPromptEncoderConfig, SamVisionConfig logger = logging.get_logger(__name__) _CONFIG_FOR_DOC = "SamConfig" _CHECKPOINT_FOR_DOC = "facebook/sam-vit-huge" TF_SAM_PRETRAINED_MODEL_ARCHIVE_LIST = [ "facebook/sam-vit-huge", "facebook/sam-vit-large", "facebook/sam-vit-base", # See all SAM models at https://huggingface.co/models?filter=sam ] @dataclass class TFSamVisionEncoderOutput(ModelOutput): """ Base class for sam vision model's outputs that also contains image embeddings obtained by applying the projection layer to the pooler_output. Args: image_embeds (`tf.Tensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`): The image embeddings obtained by applying the projection layer to the pooler_output. last_hidden_state (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): Sequence of hidden-states at the output of the last layer of the model. hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ image_embeds: tf.Tensor | None = None last_hidden_state: tf.Tensor = None hidden_states: Tuple[tf.Tensor] | None = None attentions: Tuple[tf.Tensor] | None = None @dataclass class TFSamImageSegmentationOutput(ModelOutput): """ Base class for Segment-Anything model's output Args: iou_scores (`tf.Tensor` of shape `(batch_size, num_masks)`): The iou scores of the predicted masks. pred_masks (`tf.Tensor` of shape `(batch_size, num_masks, height, width)`): The predicted low resolutions masks. Needs to be post-processed by the processor vision_hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `tf.Tensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the vision model at the output of each layer plus the optional initial embedding outputs. vision_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. mask_decoder_attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ iou_scores: tf.Tensor = None pred_masks: tf.Tensor = None vision_hidden_states: Tuple[tf.Tensor] | None = None vision_attentions: Tuple[tf.Tensor] | None = None mask_decoder_attentions: Tuple[tf.Tensor] | None = None class TFSamPatchEmbeddings(tf.keras.layers.Layer): """ This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial `hidden_states` (patch embeddings) of shape `(batch_size, seq_length, hidden_size)` to be consumed by a Transformer. """ def __init__(self, config, **kwargs): super().__init__(**kwargs) image_size, patch_size = config.image_size, config.patch_size num_channels, hidden_size = config.num_channels, config.hidden_size image_size = image_size if isinstance(image_size, collections.abc.Iterable) else (image_size, image_size) patch_size = patch_size if isinstance(patch_size, collections.abc.Iterable) else (patch_size, patch_size) num_patches = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.image_size = image_size self.patch_size = patch_size self.num_channels = num_channels self.num_patches = num_patches self.projection = tf.keras.layers.Conv2D( hidden_size, kernel_size=patch_size, strides=patch_size, name="projection" ) def call(self, pixel_values): batch_size, num_channels, height, width = shape_list(pixel_values) if num_channels != self.num_channels: raise ValueError( "Make sure that the channel dimension of the pixel values match with the one set in the configuration." ) if height != self.image_size[0] or width != self.image_size[1]: raise ValueError( f"Input image size ({height}*{width}) doesn't match model ({self.image_size[0]}*{self.image_size[1]})." ) embeddings = self.projection(tf.transpose(pixel_values, perm=[0, 2, 3, 1])) return embeddings class TFSamMLPBlock(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.lin1 = tf.keras.layers.Dense(config.mlp_dim, name="lin1") self.lin2 = tf.keras.layers.Dense(config.hidden_size, name="lin2") self.act = ACT2FN[config.hidden_act] def call(self, hidden_states: tf.Tensor) -> tf.Tensor: hidden_states = self.lin1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.lin2(hidden_states) return hidden_states class TFSamLayerNorm(tf.keras.layers.Layer): r"""LayerNorm that supports two data formats: channels_last (default) or channels_first. The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch_size, height, width, channels) while channels_first corresponds to inputs with shape (batch_size, channels, height, width). """ def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last", **kwargs): super().__init__(**kwargs) self.eps = eps self.data_format = data_format self.normalized_shape = normalized_shape if self.data_format not in ["channels_last", "channels_first"]: raise NotImplementedError(f"Unsupported data format: {self.data_format}") def build(self, input_shape): self.weight = self.add_weight(shape=self.normalized_shape, initializer="ones", name="weight") self.bias = self.add_weight(shape=self.normalized_shape, initializer="zeros", name="bias") super().build(input_shape) def call(self, x: tf.Tensor) -> tf.Tensor: if self.data_format == "channels_last": x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=-1) elif self.data_format == "channels_first": x = functional_layernorm(x, weight=self.weight, bias=self.bias, epsilon=self.eps, axis=1) return x class TFSamAttention(tf.keras.layers.Layer): """ SAM's attention layer that allows for downscaling the size of the embedding after projection to queries, keys, and values. """ def __init__(self, config, downsample_rate=None, **kwargs): super().__init__(**kwargs) self.hidden_size = config.hidden_size downsample_rate = config.attention_downsample_rate if downsample_rate is None else downsample_rate self.internal_dim = config.hidden_size // downsample_rate self.num_attention_heads = config.num_attention_heads if self.internal_dim % config.num_attention_heads != 0: raise ValueError("num_attention_heads must divide hidden_size.") self.q_proj = tf.keras.layers.Dense(self.internal_dim, name="q_proj") self.k_proj = tf.keras.layers.Dense(self.internal_dim, name="k_proj") self.v_proj = tf.keras.layers.Dense(self.internal_dim, name="v_proj") self.out_proj = tf.keras.layers.Dense(self.hidden_size, name="out_proj") def _separate_heads(self, hidden_states: tf.Tensor, num_attention_heads: int) -> tf.Tensor: batch, point_batch_size, n_tokens, channel = shape_list(hidden_states) c_per_head = channel // num_attention_heads hidden_states = tf.reshape( hidden_states, (batch * point_batch_size, n_tokens, num_attention_heads, c_per_head) ) return tf.transpose(hidden_states, perm=[0, 2, 1, 3]) def _recombine_heads(self, hidden_states: tf.Tensor, point_batch_size: int) -> tf.Tensor: batch, n_heads, n_tokens, c_per_head = shape_list(hidden_states) hidden_states = tf.transpose(hidden_states, perm=[0, 2, 1, 3]) return tf.reshape( hidden_states, (batch // tf.reduce_max([1, point_batch_size]), point_batch_size, n_tokens, n_heads * c_per_head), ) def call(self, query: tf.Tensor, key: tf.Tensor, value: tf.Tensor) -> tf.Tensor: # Input projections query = self.q_proj(query) key = self.k_proj(key) value = self.v_proj(value) point_batch_size = shape_list(query)[1] # Separate into heads query = self._separate_heads(query, self.num_attention_heads) key = self._separate_heads(key, self.num_attention_heads) value = self._separate_heads(value, self.num_attention_heads) # SamAttention _, _, _, c_per_head = shape_list(query) attn = tf.matmul( query, tf.transpose(key, perm=[0, 1, 3, 2]) ) # batch_size * point_batch_size x N_heads x N_tokens x N_tokens attn = attn / tf.math.sqrt(float(c_per_head)) attn = tf.nn.softmax(attn, axis=-1) # Get output out = tf.matmul(attn, value) out = self._recombine_heads(out, point_batch_size) out = self.out_proj(out) return out class TFSamTwoWayAttentionBlock(tf.keras.layers.Layer): def __init__(self, config, attention_downsample_rate: int = 2, skip_first_layer_pe: bool = False, **kwargs): """ A transformer block with four layers: (1) self-attention of sparse inputs (2) cross attention of sparse inputs -> dense inputs (3) mlp block on sparse inputs (4) cross attention of dense inputs -> sparse inputs Arguments: config (`SamMaskDecoderConfig`): The configuration file used to instantiate the block attention_downsample_rate (*optionalk*, int, defaults to 2): The downsample ratio of the block used to reduce the inner dim of the attention. skip_first_layer_pe (*optional*, bool, defaults to `False`): Whether or not to skip the addition of the query_point_embedding on the first layer. """ super().__init__(**kwargs) self.hidden_size = config.hidden_size self.layer_norm_eps = config.layer_norm_eps self.self_attn = TFSamAttention(config, downsample_rate=1, name="self_attn") self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm1") self.cross_attn_token_to_image = TFSamAttention( config, downsample_rate=attention_downsample_rate, name="cross_attn_token_to_image" ) self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm2") self.mlp = TFSamMLPBlock(config, name="mlp") self.layer_norm3 = tf.keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm3") self.layer_norm4 = tf.keras.layers.LayerNormalization(epsilon=self.layer_norm_eps, name="layer_norm4") self.cross_attn_image_to_token = TFSamAttention( config, downsample_rate=attention_downsample_rate, name="cross_attn_image_to_token" ) self.skip_first_layer_pe = skip_first_layer_pe def call( self, queries: tf.Tensor, keys: tf.Tensor, query_point_embedding: tf.Tensor, key_point_embedding: tf.Tensor, output_attentions: bool = False, ): # Self attention block if self.skip_first_layer_pe: queries = self.self_attn(query=queries, key=queries, value=queries) else: query = queries + query_point_embedding attn_out = self.self_attn(query=query, key=query, value=queries) queries = queries + attn_out queries = self.layer_norm1(queries) # Cross attention block, tokens attending to image embedding query = queries + query_point_embedding key = keys + key_point_embedding attn_out = self.cross_attn_token_to_image(query=query, key=key, value=keys) queries = queries + attn_out queries = self.layer_norm2(queries) # MLP block mlp_out = self.mlp(queries) queries = queries + mlp_out queries = self.layer_norm3(queries) # Cross attention block, image embedding attending to tokens query = queries + query_point_embedding key = keys + key_point_embedding attn_out = self.cross_attn_image_to_token(query=key, key=query, value=queries) keys = keys + attn_out keys = self.layer_norm4(keys) outputs = (queries, keys) if output_attentions: outputs = outputs + (attn_out,) else: outputs = outputs + (None,) return outputs class TFSamTwoWayTransformer(tf.keras.layers.Layer): def __init__(self, config: SamMaskDecoderConfig, **kwargs): super().__init__(**kwargs) self.config = config self.num_hidden_layers = config.num_hidden_layers self.layers = [] for i in range(self.num_hidden_layers): self.layers.append(TFSamTwoWayAttentionBlock(config, skip_first_layer_pe=(i == 0), name=f"layers_._{i}")) self.final_attn_token_to_image = TFSamAttention(config, name="final_attn_token_to_image") self.layer_norm_final_attn = tf.keras.layers.LayerNormalization( epsilon=config.layer_norm_eps, name="layer_norm_final_attn" ) def call( self, point_embeddings: tf.Tensor, image_embeddings: tf.Tensor, image_positional_embeddings: tf.Tensor, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[Tuple, TFBaseModelOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict all_attentions = () if image_embeddings is None: raise ValueError("You have to specify an image_embedding") image_embeddings = tf.transpose(flatten(image_embeddings, 2), perm=(0, 2, 1))[:, None] image_positional_embeddings = tf.transpose(flatten(image_positional_embeddings, 2), (0, 2, 1))[:, None] # Prepare queries queries = point_embeddings keys = image_embeddings # Apply transformer blocks and final layernorm for layer in self.layers: queries, keys, attention_outputs = layer( queries=queries, keys=keys, query_point_embedding=point_embeddings, key_point_embedding=image_positional_embeddings, output_attentions=output_attentions, ) if output_attentions: all_attentions = all_attentions + (attention_outputs,) # Apply the final attenion layer from the points to the image query = queries + point_embeddings key = keys + image_positional_embeddings attn_out = self.final_attn_token_to_image(query=query, key=key, value=keys) queries = queries + attn_out queries = self.layer_norm_final_attn(queries) return queries, keys, all_attentions class TFSamFeedForward(tf.keras.layers.Layer): def __init__( self, input_dim: int, hidden_dim: int, output_dim: int, num_layers: int, sigmoid_output: bool = False, **kwargs ): super().__init__(**kwargs) self.num_layers = num_layers self.activation = tf.keras.layers.ReLU() self.proj_in = tf.keras.layers.Dense(hidden_dim, input_shape=(input_dim,), name="proj_in") self.proj_out = tf.keras.layers.Dense(output_dim, input_shape=(hidden_dim,), name="proj_out") self.layers = [ tf.keras.layers.Dense(hidden_dim, input_shape=(hidden_dim,), name=f"layers_._{i}") for i in range(num_layers - 2) ] self.sigmoid_output = sigmoid_output def call(self, hidden_states): hidden_states = self.proj_in(hidden_states) hidden_states = self.activation(hidden_states) for layer in self.layers: hidden_states = self.activation(layer(hidden_states)) hidden_states = self.proj_out(hidden_states) if self.sigmoid_output: hidden_states = tf.sigmoid(hidden_states) return hidden_states class TFSamMaskDecoder(tf.keras.layers.Layer): def __init__(self, config: SamMaskDecoderConfig, **kwargs): super().__init__(**kwargs) self.hidden_size = config.hidden_size self.num_multimask_outputs = config.num_multimask_outputs self.num_mask_tokens = config.num_multimask_outputs + 1 self.transformer = TFSamTwoWayTransformer(config, name="transformer") self.upscale_conv1 = tf.keras.layers.Conv2DTranspose( self.hidden_size // 4, kernel_size=2, strides=2, name="upscale_conv1", data_format="channels_first" ) self.upscale_conv2 = tf.keras.layers.Conv2DTranspose( self.hidden_size // 8, kernel_size=2, strides=2, name="upscale_conv2", data_format="channels_first" ) self.upscale_layer_norm = TFSamLayerNorm( self.hidden_size // 4, data_format="channels_first", name="upscale_layer_norm" ) self.activation = tf.nn.gelu mlps_list = [] for i in range(self.num_mask_tokens): mlps_list += [ TFSamFeedForward( self.hidden_size, self.hidden_size, self.hidden_size // 8, 3, name=f"output_hypernetworks_mlps_._{i}", ) ] self.output_hypernetworks_mlps = mlps_list self.iou_prediction_head = TFSamFeedForward( self.hidden_size, config.iou_head_hidden_dim, self.num_mask_tokens, config.iou_head_depth, name="iou_prediction_head", ) def build(self, input_shape): self.iou_token = self.add_weight(shape=(1, self.hidden_size), name="iou_token.weight", trainable=True) self.mask_tokens = self.add_weight( shape=(self.num_mask_tokens, self.hidden_size), name="mask_tokens.weight", trainable=True ) super().build(input_shape) def call( self, image_embeddings: tf.Tensor, image_positional_embeddings: tf.Tensor, sparse_prompt_embeddings: tf.Tensor, dense_prompt_embeddings: tf.Tensor, multimask_output: bool, output_attentions: Optional[bool] = None, ) -> Tuple[tf.Tensor, tf.Tensor]: batch_size, num_channels, height, width = shape_list(image_embeddings) point_batch_size = tf.math.maximum(1, tf.shape(sparse_prompt_embeddings)[1]) output_tokens = tf.concat([self.iou_token, self.mask_tokens], axis=0) # Should be (1, 32) + (4, 32) = (5, 32) output_tokens = tf.tile( output_tokens[None, None, :], [batch_size, point_batch_size, 1, 1] ) # Should be (batch_size, point_size, 5, 32) # Matt: The original Torch code checked that the sum of sparse_prompt_embeddings equalled 0. However, this only # happens when the sparse prompt embeddings are an empty tensor with shape[1] == 0. I replaced # it with an explicit shape check to avoid data-dependent control flow which breaks XLA. if shape_list(sparse_prompt_embeddings)[1] != 0: tokens = tf.concat((output_tokens, sparse_prompt_embeddings), axis=2) else: tokens = output_tokens point_embeddings = tf.cast(tokens, self.iou_token.dtype) image_embeddings = image_embeddings + dense_prompt_embeddings image_embeddings = tf.tile(image_embeddings, [point_batch_size, 1, 1, 1]) image_positional_embeddings = tf.tile(image_positional_embeddings, [point_batch_size, 1, 1, 1]) point_embedding, image_embeddings, attentions = self.transformer( point_embeddings=point_embeddings, image_embeddings=image_embeddings, image_positional_embeddings=image_positional_embeddings, output_attentions=output_attentions, ) iou_token_out = point_embedding[:, :, 0, :] mask_tokens_out = point_embedding[:, :, 1 : (1 + self.num_mask_tokens), :] image_embeddings = tf.transpose(image_embeddings, perm=(0, 1, 3, 2)) image_embeddings = tf.reshape(image_embeddings, [batch_size * point_batch_size, num_channels, height, width]) upscaled_embedding = self.upscale_conv1(image_embeddings) upscaled_embedding = self.activation(self.upscale_layer_norm(upscaled_embedding)) upscaled_embedding = self.activation(self.upscale_conv2(upscaled_embedding)) hyper_in_list = [] for i in range(self.num_mask_tokens): current_mlp = self.output_hypernetworks_mlps[i] hyper_in_list += [current_mlp(mask_tokens_out[:, :, i, :])] hyper_in = tf.stack(hyper_in_list, axis=2) _, num_channels, height, width = shape_list(upscaled_embedding) upscaled_embedding = tf.reshape( upscaled_embedding, [batch_size, point_batch_size, num_channels, height * width] ) masks = tf.reshape(hyper_in @ upscaled_embedding, [batch_size, point_batch_size, -1, height, width]) iou_pred = self.iou_prediction_head(iou_token_out) if multimask_output: mask_slice = slice(1, None) else: mask_slice = slice(0, 1) masks = masks[:, :, mask_slice, :, :] iou_pred = iou_pred[:, :, mask_slice] outputs = (masks, iou_pred) if output_attentions: outputs = outputs + (attentions,) else: outputs = outputs + (None,) return outputs class TFSamPositionalEmbedding(tf.keras.layers.Layer): def __init__(self, config, **kwargs): super().__init__(**kwargs) self.scale = config.hidden_size // 2 self.config = config def build(self, input_shape): # TODO Matt: What is going on here? Why is a non-trainable weight randomly initialized? self.positional_embedding = self.add_weight( name="positional_embedding", shape=(2, self.config.num_pos_feats), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=self.scale), trainable=False, ) super().build(input_shape) def call(self, input_coords, input_shape=None): """Positionally encode points that are normalized to [0,1].""" coordinates = tf.identity(input_coords) if input_shape is not None: coordinates = tf.stack( [ tf.cast(coordinates[:, :, :, 0], tf.float32) / input_shape[1], tf.cast(coordinates[:, :, :, 1], tf.float32) / input_shape[0], ], axis=-1, ) # assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape coordinates = 2 * coordinates - 1 coordinates = tf.cast(coordinates, self.positional_embedding.dtype) coordinates = tf.matmul(coordinates, self.positional_embedding) coordinates = 2 * np.pi * coordinates # outputs d_1 x ... x d_n x channel shape return tf.concat([tf.sin(coordinates), tf.cos(coordinates)], axis=-1) class TFSamMaskEmbedding(tf.keras.layers.Layer): def __init__(self, config: SamPromptEncoderConfig, **kwargs): super().__init__(**kwargs) self.mask_input_channels = config.mask_input_channels // 4 self.activation = ACT2FN[config.hidden_act] self.conv1 = tf.keras.layers.Conv2D(self.mask_input_channels, kernel_size=2, strides=2, name="conv1") self.conv2 = tf.keras.layers.Conv2D(config.mask_input_channels, kernel_size=2, strides=2, name="conv2") self.conv3 = tf.keras.layers.Conv2D(config.hidden_size, kernel_size=1, name="conv3") self.layer_norm1 = TFSamLayerNorm(self.mask_input_channels, config.layer_norm_eps, name="layer_norm1") self.layer_norm2 = TFSamLayerNorm(self.mask_input_channels * 4, config.layer_norm_eps, name="layer_norm2") def call(self, masks): masks = tf.transpose(masks, perm=(0, 2, 3, 1)) # Convert to channels-last hidden_states = self.conv1(masks) hidden_states = self.layer_norm1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.layer_norm2(hidden_states) hidden_states = self.activation(hidden_states) dense_embeddings = self.conv3(hidden_states) dense_embeddings = tf.transpose(dense_embeddings, perm=(0, 3, 1, 2)) # Convert back to channels-first return dense_embeddings def build(self, input_shape): # This class needs an explicit build method because it isn't called with the standard dummy inputs conv1_shape = [None, None, None, 1] conv2_shape = [None, None, None, self.mask_input_channels] conv3_shape = [None, None, None, self.mask_input_channels * 4] layer_norm1_shape = [None, None, None, self.mask_input_channels] layer_norm2_shape = [None, None, None, self.mask_input_channels * 4] with tf.name_scope("conv1"): self.conv1.build(conv1_shape) with tf.name_scope("conv2"): self.conv2.build(conv2_shape) with tf.name_scope("conv3"): self.conv3.build(conv3_shape) with tf.name_scope("layer_norm1"): self.layer_norm1.build(layer_norm1_shape) with tf.name_scope("layer_norm2"): self.layer_norm2.build(layer_norm2_shape) super().build(input_shape) class TFSamPromptEncoder(tf.keras.layers.Layer): def __init__(self, config: SamPromptEncoderConfig, shared_patch_embedding, **kwargs): super().__init__(**kwargs) self.shared_embedding = shared_patch_embedding self.mask_embed = TFSamMaskEmbedding(config, name="mask_embed") self.no_mask_embed = None self.image_embedding_size = (config.image_embedding_size, config.image_embedding_size) self.input_image_size = config.image_size self.point_embed = [] self.hidden_size = config.hidden_size self.not_a_point_embed = None self.config = config def build(self, input_shape): self.no_mask_embed = self.add_weight( name="no_mask_embed.weight", shape=(1, self.hidden_size), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02), trainable=True, ) self.point_embed = [ self.add_weight( name=f"point_embed_._{i}.weight", shape=(1, self.hidden_size), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02), trainable=True, ) for i in range(self.config.num_point_embeddings) ] self.not_a_point_embed = self.add_weight( name="not_a_point_embed.weight", shape=(1, self.hidden_size), initializer=tf.keras.initializers.RandomNormal(mean=0.0, stddev=0.02), trainable=True, ) with tf.name_scope("mask_embed"): # We must explicitly build the mask embed because it isn't touched by the standard dummy inputs self.mask_embed.build( (None, self.config.mask_input_channels, self.config.image_size, self.config.image_size) ) super().build(input_shape) def _embed_points(self, points: tf.Tensor, labels: tf.Tensor, pad: bool) -> tf.Tensor: """Embeds point prompts.""" points = points + 0.5 # Shift to center of pixel if pad: target_point_shape = (shape_list(points)[0], shape_list(points)[1], 1, shape_list(points)[-1]) target_labels_shape = (shape_list(points)[0], shape_list(points)[1], 1) padding_point = tf.zeros(target_point_shape, dtype=points.dtype) padding_label = -tf.ones(target_labels_shape, dtype=labels.dtype) points = tf.concat([points, padding_point], axis=2) labels = tf.concat([labels, padding_label], axis=2) input_shape = (self.input_image_size, self.input_image_size) point_embedding = self.shared_embedding(points, input_shape) point_embedding = tf.where(labels[..., None] == -1, self.not_a_point_embed[0], point_embedding) point_embedding = tf.where( labels[..., None] != -10, point_embedding, tf.zeros_like(point_embedding), ) point_embedding = tf.where( (labels == 0)[:, :, :, None], point_embedding + self.point_embed[0], point_embedding ) point_embedding = tf.where( (labels == 1)[:, :, :, None], point_embedding + self.point_embed[1], point_embedding ) return point_embedding def _embed_boxes(self, boxes: tf.Tensor) -> tf.Tensor: """Embeds box prompts.""" boxes = boxes + 0.5 # Shift to center of pixel batch_size, nb_boxes = shape_list(boxes)[:2] coords = tf.reshape(boxes, (batch_size, nb_boxes, 2, 2)) input_shape = (self.input_image_size, self.input_image_size) corner_embedding = self.shared_embedding(coords, input_shape) corner_embedding += tf.where( tf.range(shape_list(corner_embedding)[2])[None, None, :, None] == 0, self.point_embed[2][0], self.point_embed[3][0], ) return corner_embedding def call( self, batch_size: Optional[int], input_points: Optional[Tuple[tf.Tensor, tf.Tensor]], input_labels: tf.Tensor | None, input_boxes: tf.Tensor | None, input_masks: tf.Tensor | None, ) -> Tuple[tf.Tensor, tf.Tensor]: """ Embeds different types of prompts, returning both sparse and dense embeddings. Args: points (`tf.Tensor`, *optional*): point coordinates and labels to embed. boxes (`tf.Tensor`, *optional*): boxes to embed masks (`tf.Tensor`, *optional*): masks to embed """ sparse_embeddings = None if input_points is not None: batch_size, point_batch_size = shape_list(input_points)[:2] if input_labels is None: raise ValueError("If points are provided, labels must also be provided.") point_embeddings = self._embed_points(input_points, input_labels, pad=(input_boxes is None)) sparse_embeddings = tf.zeros( (batch_size, point_batch_size, 0, self.hidden_size), dtype=point_embeddings.dtype ) sparse_embeddings = tf.concat([sparse_embeddings, point_embeddings], axis=2) if input_boxes is not None: batch_size = shape_list(input_boxes)[0] box_embeddings = self._embed_boxes(input_boxes) if sparse_embeddings is None: sparse_embeddings = box_embeddings else: sparse_embeddings = tf.concat([sparse_embeddings, box_embeddings], axis=2) if input_masks is not None: dense_embeddings = self.mask_embed(input_masks) else: dense_embeddings = self.no_mask_embed[0] dense_embeddings = tf.reshape(dense_embeddings, (1, -1, 1, 1)) dense_embeddings = tf.tile( dense_embeddings, (batch_size, 1, self.image_embedding_size[0], self.image_embedding_size[1]) ) if sparse_embeddings is None: sparse_embeddings = tf.zeros((batch_size, 0, 1, self.hidden_size), dtype=dense_embeddings.dtype) return sparse_embeddings, dense_embeddings class TFSamVisionAttention(tf.keras.layers.Layer): """Multi-head Attention block with relative position embeddings.""" def __init__(self, config, window_size, **kwargs): super().__init__(**kwargs) input_size = ( (config.image_size // config.patch_size, config.image_size // config.patch_size) if window_size == 0 else (window_size, window_size) ) self.input_size = input_size self.num_attention_heads = config.num_attention_heads head_dim = config.hidden_size // config.num_attention_heads self.head_dim = head_dim self.scale = head_dim**-0.5 self.dropout = config.attention_dropout self.qkv = tf.keras.layers.Dense(config.hidden_size * 3, use_bias=config.qkv_bias, name="qkv") self.proj = tf.keras.layers.Dense(config.hidden_size, name="proj") self.use_rel_pos = config.use_rel_pos if self.use_rel_pos: if input_size is None: raise ValueError("Input size must be provided if using relative positional encoding.") def build(self, input_shape): if self.input_size is not None: # initialize relative positional embeddings self.rel_pos_h = self.add_weight( shape=(2 * self.input_size[0] - 1, self.head_dim), initializer="zeros", name="rel_pos_h" ) self.rel_pos_w = self.add_weight( shape=(2 * self.input_size[1] - 1, self.head_dim), initializer="zeros", name="rel_pos_w" ) super().build(input_shape) def get_rel_pos(self, q_size: int, k_size: int, rel_pos: tf.Tensor) -> tf.Tensor: """ Get relative positional embeddings according to the relative positions of query and key sizes. Args: q_size (int): size of the query. k_size (int): size of key k. rel_pos (`tf.Tensor`): relative position embeddings (L, channel). Returns: Extracted positional embeddings according to relative positions. """ max_rel_dist = int(2 * max(q_size, k_size) - 1) # Interpolate rel pos if needed. if rel_pos.shape[0] != max_rel_dist: # Interpolate rel pos. rel_pos_resized = tf.image.resize( tf.reshape(rel_pos, (1, rel_pos.shape[0], -1)), size=(max_rel_dist, rel_pos.shape[1]), method="bilinear", ) rel_pos_resized = tf.reshape(rel_pos_resized, (-1, max_rel_dist)) else: rel_pos_resized = rel_pos # Scale the coords with short length if shapes for q and k are different. q_coords = tf.expand_dims(tf.range(q_size, dtype=tf.float32), 1) * max(k_size / q_size, 1.0) k_coords = tf.expand_dims(tf.range(k_size, dtype=tf.float32), 0) * max(q_size / k_size, 1.0) relative_coords = (q_coords - k_coords) + (k_size - 1) * max(q_size / k_size, 1.0) return tf.gather(rel_pos_resized, tf.cast(relative_coords, tf.int32)) def add_decomposed_rel_pos( self, attn: tf.Tensor, query: tf.Tensor, rel_pos_h: tf.Tensor, rel_pos_w: tf.Tensor, q_size: Tuple[int, int], k_size: Tuple[int, int], ) -> tf.Tensor: """ Calculate decomposed Relative Positional Embeddings from :paper:`mvitv2`. https://github.com/facebookresearch/mvit/blob/19786631e330df9f3622e5402b4a419a263a2c80/mvit/models/attention.py Args: attn (`tf.Tensor`): attention map. query (`tf.Tensor`): query q in the attention layer with shape (batch_size, query_height * query_width, channel). rel_pos_h (`tf.Tensor`): relative position embeddings (Lh, channel) for height axis. rel_pos_w (`tf.Tensor`): relative position embeddings (Lw, channel) for width axis. q_size (tuple): spatial sequence size of query q with (query_height, query_width). k_size (tuple): spatial sequence size of key k with (key_height, key_width). Returns: attn (`tf.Tensor`): attention map with added relative positional embeddings. """ query_height, query_width = q_size key_height, key_width = k_size relative_position_height = self.get_rel_pos(query_height, key_height, rel_pos_h) relative_position_width = self.get_rel_pos(query_width, key_width, rel_pos_w) batch_size, _, dim = shape_list(query) reshaped_query = tf.reshape(query, (batch_size, query_height, query_width, dim)) rel_h = tf.einsum("bhwc,hkc->bhwk", reshaped_query, relative_position_height) rel_w = tf.einsum("bhwc,wkc->bhwk", reshaped_query, relative_position_width) attn = tf.reshape(attn, (batch_size, query_height, query_width, key_height, key_width)) attn = attn + tf.expand_dims(rel_h, axis=-1) + tf.expand_dims(rel_w, axis=-2) attn = tf.reshape(attn, (batch_size, query_height * query_width, key_height * key_width)) return attn def call(self, hidden_states: tf.Tensor, output_attentions=False, training=False) -> tf.Tensor: batch_size, height, width, _ = shape_list(hidden_states) # qkv with shape (3, batch_size, nHead, height * width, channel) qkv = tf.reshape(self.qkv(hidden_states), (batch_size, height * width, 3, self.num_attention_heads, -1)) qkv = tf.transpose(qkv, perm=(2, 0, 3, 1, 4)) # q, k, v with shape (batch_size * nHead, height * width, channel) query, key, value = tf.unstack( tf.reshape(qkv, (3, batch_size * self.num_attention_heads, height * width, -1)), axis=0 ) attn_weights = tf.matmul(query * self.scale, key, transpose_b=True) if self.use_rel_pos: attn_weights = self.add_decomposed_rel_pos( attn_weights, query, self.rel_pos_h, self.rel_pos_w, (height, width), (height, width) ) attn_weights = tf.nn.softmax(attn_weights, axis=-1) if training: attn_probs = tf.nn.dropout(attn_weights, rate=self.dropout) else: attn_probs = attn_weights attn_output = tf.reshape(attn_probs @ value, (batch_size, self.num_attention_heads, height, width, -1)) attn_output = tf.transpose(attn_output, perm=(0, 2, 3, 1, 4)) attn_output = tf.reshape(attn_output, (batch_size, height, width, -1)) attn_output = self.proj(attn_output) if output_attentions: outputs = (attn_output, attn_weights) else: outputs = (attn_output, None) return outputs class TFSamVisionLayer(tf.keras.layers.Layer): def __init__(self, config, window_size, **kwargs): super().__init__(**kwargs) self.layer_norm1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm1") self.attn = TFSamVisionAttention(config, window_size, name="attn") self.layer_norm2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm2") self.mlp = TFSamMLPBlock(config, name="mlp") self.window_size = window_size def window_partition(self, hidden_states: tf.Tensor, window_size: int) -> Tuple[tf.Tensor, Tuple[int, int]]: batch_size, height, width, channel = shape_list(hidden_states) pad_h = (window_size - height % window_size) % window_size pad_w = (window_size - width % window_size) % window_size if pad_h > 0 or pad_w > 0: hidden_states = tf.pad(hidden_states, [[0, 0], [0, pad_h], [0, pad_w], [0, 0]]) pad_height, pad_width = height + pad_h, width + pad_w hidden_states = tf.reshape( hidden_states, [batch_size, pad_height // window_size, window_size, pad_width // window_size, window_size, channel], ) windows = tf.reshape( tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [-1, window_size, window_size, channel] ) return windows, (pad_height, pad_width) def window_unpartition( self, windows: tf.Tensor, window_size: int, padding_shape: Tuple[int, int], original_shape: Tuple[int, int] ) -> tf.Tensor: pad_height, pad_width = padding_shape height, width = original_shape batch_size = shape_list(windows)[0] // (pad_height * pad_width // window_size // window_size) hidden_states = tf.reshape( windows, [batch_size, pad_height // window_size, pad_width // window_size, window_size, window_size, -1] ) hidden_states = tf.reshape( tf.transpose(hidden_states, perm=[0, 1, 3, 2, 4, 5]), [batch_size, pad_height, pad_width, -1] ) if pad_height > height or pad_width > width: hidden_states = hidden_states[:, :height, :width, :] return hidden_states def call( self, hidden_states: tf.Tensor, output_attentions: Optional[bool] = False, training: Optional[bool] = False, ) -> Tuple[tf.Tensor]: residual = hidden_states hidden_states = self.layer_norm1(hidden_states) if self.window_size > 0: height, width = hidden_states.shape[1], hidden_states.shape[2] hidden_states, padding_shape = self.window_partition(hidden_states, self.window_size) hidden_states, attn_weights = self.attn( hidden_states=hidden_states, output_attentions=output_attentions, training=training, ) if self.window_size > 0: hidden_states = self.window_unpartition(hidden_states, self.window_size, padding_shape, (height, width)) hidden_states = residual + hidden_states layernorm_output = self.layer_norm2(hidden_states) hidden_states = hidden_states + self.mlp(layernorm_output) outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class TFSamVisionNeck(tf.keras.layers.Layer): def __init__(self, config: SamVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.conv1 = tf.keras.layers.Conv2D( config.output_channels, kernel_size=1, use_bias=False, name="conv1", ) self.layer_norm1 = TFSamLayerNorm(config.output_channels, name="layer_norm1") self.conv2 = tf.keras.layers.Conv2D( config.output_channels, kernel_size=3, padding="same", use_bias=False, name="conv2", ) self.layer_norm2 = TFSamLayerNorm(config.output_channels, name="layer_norm2") def call(self, hidden_states): hidden_states = self.conv1(hidden_states) hidden_states = self.layer_norm1(hidden_states) hidden_states = self.conv2(hidden_states) hidden_states = self.layer_norm2(hidden_states) hidden_states = tf.transpose(hidden_states, perm=[0, 3, 1, 2]) return hidden_states class TFSamVisionEncoder(tf.keras.layers.Layer): def __init__(self, config: SamVisionConfig, **kwargs): super().__init__(**kwargs) self.config = config self.image_size = config.image_size self.patch_embed = TFSamPatchEmbeddings(config, name="patch_embed") self.pos_embed = None self.layers = [] for i in range(config.num_hidden_layers): layer = TFSamVisionLayer( config, window_size=config.window_size if i not in config.global_attn_indexes else 0, name=f"layers_._{i}", ) self.layers.append(layer) self.neck = TFSamVisionNeck(config, name="neck") def build(self, input_shape): if self.config.use_abs_pos: # Initialize absolute positional embedding with pretrain image size. self.pos_embed = self.add_weight( shape=[ 1, self.config.image_size // self.config.patch_size, self.config.image_size // self.config.patch_size, self.config.hidden_size, ], initializer="zeros", trainable=True, name="pos_embed", ) super().build(input_shape) def get_input_embeddings(self): return self.patch_embed def call( self, pixel_values: tf.Tensor | None = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, training: Optional[bool] = False, ) -> Union[Tuple, TFSamVisionEncoderOutput]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("You have to specify pixel_values") hidden_states = self.patch_embed(pixel_values) if self.pos_embed is not None: hidden_states = hidden_states + self.pos_embed all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layers): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module(hidden_states, output_attentions=output_attentions, training=training) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) hidden_states = self.neck(hidden_states) if not return_dict: outputs = (hidden_states,) if output_hidden_states: outputs = outputs + (all_hidden_states,) if output_attentions: outputs = outputs + (all_self_attentions,) return outputs return TFSamVisionEncoderOutput( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, ) class TFSamPreTrainedModel(TFPreTrainedModel): config_class = SamConfig base_model_prefix = "sam" main_input_name = "pixel_values" SAM_START_DOCSTRING = r""" This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.) This model is also a TensorFlow [tf.keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it as a regular TensorFlow Model and refer to the TensorFlow documentation for all matter related to general usage and behavior. Parameters: config ([`SamConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. """ SAM_INPUTS_DOCSTRING = r""" Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`SamProcessor`]. See [`SamProcessor.__call__`] for details. input_points (`tf.Tensor` of shape `(batch_size, num_points, 2)`): Input 2D spatial points, this is used by the prompt encoder to encode the prompt. Generally yields to much better results. The points can be obtained by passing a list of list of list to the processor that will create corresponding `tf` tensors of dimension 4. The first dimension is the image batch size, the second dimension is the point batch size (i.e. how many segmentation masks do we want the model to predict per input point), the third dimension is the number of points per segmentation mask (it is possible to pass multiple points for a single mask), and the last dimension is the x (vertical) and y (horizontal) coordinates of the point. If a different number of points is passed either for each image, or for each mask, the processor will create "PAD" points that will correspond to the (0, 0) coordinate, and the computation of the embedding will be skipped for these points using the labels. input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points)`): Input labels for the points, this is used by the prompt encoder to encode the prompt. According to the official implementation, there are 3 types of labels - `1`: the point is a point that contains the object of interest - `0`: the point is a point that does not contain the object of interest - `-1`: the point corresponds to the background We added the label: - `-10`: the point is a padding point, thus should be ignored by the prompt encoder The padding labels should be automatically done by the processor. input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes, 4)`): Input boxes for the points, this is used by the prompt encoder to encode the prompt. Generally yields to much better generated masks. The boxes can be obtained by passing a list of list of list to the processor, that will generate a `tf` tensor, with each dimension corresponding respectively to the image batch size, the number of boxes per image and the coordinates of the top left and botton right point of the box. In the order (`x1`, `y1`, `x2`, `y2`): - `x1`: the x coordinate of the top left point of the input box - `y1`: the y coordinate of the top left point of the input box - `x2`: the x coordinate of the bottom right point of the input box - `y2`: the y coordinate of the bottom right point of the input box input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`): SAM model also accepts segmentation masks as input. The mask will be embedded by the prompt encoder to generate a corresponding embedding, that will be fed later on to the mask decoder. These masks needs to be manually fed by the user, and they need to be of shape (`batch_size`, `image_size`, `image_size`). image_embeddings (`tf.Tensor` of shape `(batch_size, output_channels, window_size, window_size)`): Image embeddings, this is used by the mask decder to generate masks and iou scores. For more memory efficient computation, users can first retrieve the image embeddings using the `get_image_embeddings` method, and then feed them to the `call` method instead of feeding the `pixel_values`. multimask_output (`bool`, *optional*): In the original implementation and paper, the model always outputs 3 masks per image (or per point / per bounding box if relevant). However, it is possible to just output a single mask, that corresponds to the "best" mask, by specifying `multimask_output=False`. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( "Segment Anything Model (SAM) for generating segmentation masks, given an input image and ", " optional 2D location and bounding boxes.", SAM_START_DOCSTRING, ) class TFSamModel(TFSamPreTrainedModel): _keys_to_ignore_on_load_missing = [r"prompt_encoder.shared_embedding.positional_embedding"] def __init__(self, config, **kwargs): super().__init__(config, **kwargs) self.shared_image_embedding = TFSamPositionalEmbedding(config.vision_config, name="shared_image_embedding") self.vision_encoder = TFSamVisionEncoder(config.vision_config, name="vision_encoder") self.prompt_encoder = TFSamPromptEncoder( config.prompt_encoder_config, self.shared_image_embedding, name="prompt_encoder" ) self.mask_decoder = TFSamMaskDecoder(config.mask_decoder_config, name="mask_decoder") self.config = config def get_input_embeddings(self): return self.vision_encoder.get_input_embeddings() def get_image_wide_positional_embeddings(self): size = self.config.prompt_encoder_config.image_embedding_size grid = tf.ones((size, size)) y_embed = tf.math.cumsum(grid, axis=0) - 0.5 x_embed = tf.math.cumsum(grid, axis=1) - 0.5 y_embed = y_embed / size x_embed = x_embed / size positional_embedding = self.shared_image_embedding(tf.stack([x_embed, y_embed], axis=-1)) return tf.expand_dims(tf.transpose(positional_embedding, perm=[2, 0, 1]), axis=0) # channel x height x width def get_image_embeddings( self, pixel_values, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ): r""" Returns the image embeddings by passing the pixel values through the vision encoder. Args: pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`): Input pixel values output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.TFModelOutput`] instead of a plain tuple. """ vision_output = self.vision_encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) image_embeddings = vision_output[0] return image_embeddings def get_prompt_embeddings( self, input_points: tf.Tensor | None = None, input_labels: tf.Tensor | None = None, input_boxes: tf.Tensor | None = None, input_masks: tf.Tensor | None = None, ): r""" Returns the prompt embeddings by passing the input points, labels, boxes and masks through the prompt encoder. Args: input_points (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image, 2)`): Optional input points for the prompt encoder. The padding of the point is automatically done by the processor. `point_batch_size` refers to the number of masks that we want the model to predict per point. The model will output `point_batch_size` times 3 masks in total. input_labels (`tf.Tensor` of shape `(batch_size, point_batch_size, num_points_per_image)`): Optional input labels for the prompt encoder. The padding of the labels is automatically done by the processor, or can be fed by the user. input_boxes (`tf.Tensor` of shape `(batch_size, num_boxes_per_image, 4)`): Optional input boxes for the prompt encoder. The padding of the boxes is automatically done by the processor. users can also pass manually the input boxes. input_masks (`tf.Tensor` of shape `(batch_size, image_size, image_size)`): Optional input masks for the prompt encoder. """ prompt_output = self.prompt_encoder( input_points=input_points, input_labels=input_labels, input_boxes=input_boxes, input_masks=input_masks, ) return prompt_output @unpack_inputs @add_start_docstrings_to_model_forward(SAM_INPUTS_DOCSTRING) def call( self, pixel_values: TFModelInputType | None = None, input_points: tf.Tensor | None = None, input_labels: tf.Tensor | None = None, input_boxes: tf.Tensor | None = None, input_masks: tf.Tensor | None = None, image_embeddings: tf.Tensor | None = None, multimask_output: bool = True, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict=None, training=False, **kwargs, ) -> List[Dict[str, tf.Tensor]]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None and image_embeddings is None: raise ValueError("Either pixel_values or image_embeddings must be provided.") if pixel_values is not None and image_embeddings is not None: raise ValueError("Only one of pixel_values and image_embeddings can be provided.") if input_points is not None and len(input_points.shape) != 4: raise ValueError( "The input_points must be a 4D tensor. Of shape `batch_size`, `point_batch_size`, `nb_points_per_image`, `2`.", " got {}.".format(input_points.shape), ) if input_boxes is not None and len(input_boxes.shape) != 3: raise ValueError( "The input_points must be a 3D tensor. Of shape `batch_size`, `nb_boxes`, `4`.", " got {}.".format(input_boxes.shape), ) if input_points is not None and input_boxes is not None: point_batch_size = shape_list(input_points)[1] box_batch_size = shape_list(input_boxes)[1] if point_batch_size != box_batch_size: raise ValueError( "You should provide as many bounding boxes as input points per box. Got {} and {}.".format( point_batch_size, box_batch_size ) ) if pixel_values is not None: # Ensures that later checks pass even with an all-None shape from the serving signature pixel_values = tf.ensure_shape( pixel_values, [ None, self.config.vision_config.num_channels, self.config.vision_config.image_size, self.config.vision_config.image_size, ], ) image_positional_embeddings = self.get_image_wide_positional_embeddings() # repeat with batch size batch_size = shape_list(pixel_values)[0] if pixel_values is not None else shape_list(image_embeddings)[0] image_positional_embeddings = tf.repeat(image_positional_embeddings, batch_size, axis=0) vision_attentions = None vision_hidden_states = None if pixel_values is not None: vision_outputs = self.vision_encoder( pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, training=training, ) image_embeddings = vision_outputs["last_hidden_state"] if output_hidden_states: vision_hidden_states = vision_outputs["hidden_states"] if output_attentions: vision_attentions = vision_outputs["attentions"] if input_points is not None and input_labels is None: input_labels = tf.ones_like(input_points[:, :, :, 0], dtype=tf.int32) if input_points is not None and image_embeddings.shape[0] != input_points.shape[0]: raise ValueError( "The batch size of the image embeddings and the input points must be the same. ", "Got {} and {} respectively.".format(image_embeddings.shape[0], input_points.shape[0]), " if you want to pass multiple points for the same image, make sure that you passed ", " input_points of shape (batch_size, point_batch_size, num_points_per_image, 3) and ", " input_labels of shape (batch_size, point_batch_size, num_points_per_image)", ) sparse_embeddings, dense_embeddings = self.prompt_encoder( batch_size=shape_list(image_embeddings)[0], input_points=input_points, input_labels=input_labels, input_boxes=input_boxes, input_masks=input_masks, ) low_res_masks, iou_predictions, mask_decoder_attentions = self.mask_decoder( image_embeddings=image_embeddings, image_positional_embeddings=image_positional_embeddings, sparse_prompt_embeddings=sparse_embeddings, dense_prompt_embeddings=dense_embeddings, multimask_output=multimask_output, output_attentions=output_attentions, ) if not return_dict: output = (iou_predictions, low_res_masks) if output_hidden_states: output = output + (vision_hidden_states,) if output_attentions: output = output + (vision_attentions, mask_decoder_attentions) return output return TFSamImageSegmentationOutput( iou_scores=iou_predictions, pred_masks=low_res_masks, vision_hidden_states=vision_hidden_states, vision_attentions=vision_attentions, mask_decoder_attentions=mask_decoder_attentions, ) def serving_output(self, output: TFSamImageSegmentationOutput) -> TFSamImageSegmentationOutput: hs = tf.convert_to_tensor(output.vision_hidden_states) if self.config.output_hidden_states else None attns = tf.convert_to_tensor(output.vision_attentions) if self.config.output_attentions else None return TFSamImageSegmentationOutput( iou_scores=output.iou_scores, pred_masks=output.pred_masks, vision_hidden_states=hs if self.config.output_hidden_states else None, vision_attentions=attns if self.config.output_attentions else None, mask_decoder_attentions=output.mask_decoder_attentions if self.config.output_attentions else None, )