Variational Inference with adversarial learning for end-to-end Singing Voice Conversion based on VITS

[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/maxmax20160403/sovits5.0) [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1PY1E4bDAeHbAD4r99D_oYXB46fG8nIA5?usp=sharing) GitHub Repo stars GitHub forks GitHub issues GitHub
- πŸ’—This project is target for: beginners in deep learning, the basic operation of Python and PyTorch is the prerequisite for using this project; - πŸ’—This project aims to help deep learning beginners get rid of boring pure theoretical learning, and master the basic knowledge of deep learning by combining it with practice; - πŸ’—This project does not support real-time voice change; (support needs to replace whisper) - πŸ’—This project will not develop one-click packages for other purposesοΌ› ![sovits_framework](https://github.com/PlayVoice/so-vits-svc-5.0/assets/16432329/402cf58d-6d03-4d0b-9d6a-94f079898672) - 6G memory GPU can be used to trained - support for multiple speakers - create unique speakers through speaker mixing - even with light accompaniment can also be converted - F0 can be edited using Excel ## Model properties https://github.com/PlayVoice/so-vits-svc-5.0/releases/tag/hifigan_release - [sovits5.0_main_1500.pth](https://github.com/PlayVoice/so-vits-svc-5.0/releases/download/hifigan_release/sovits5.0_main_1500.pth) The model includes: generator + discriminator = 176M, which can be used as a pre-training model - speakers files are in the configs/singers directory, which can be used for reasoning tests, especially for timbre leakage - speakers 22, 30, 47, and 51 are highly recognizable, and the training audio samples are in the configs/singers_sample directory | Feature | From | Status | Function | Remarks | | --- | --- | --- | --- | --- | | whisper | OpenAI | βœ… | strong noise immunity | - | | bigvgan | NVIDA | βœ… | alias and snake | The GPU takes up a little more, and the main branch is deleted; You need to switch to the branch [bigvgan](https://github.com/PlayVoice/so-vits-svc-5.0/tree/bigvgan),the formant is clearer and the sound quality is obviously improved | | natural speech | Microsoft | βœ… | reduce mispronunciation | - | | neural source-filter | NII | βœ… | solve the problem of audio F0 discontinuity | - | | speaker encoder | Google | βœ… | Timbre Encoding and Clustering | - | | GRL for speaker | Ubisoft |βœ… | Preventing Encoder Leakage Timbre | - | | one shot vits | Samsung | βœ… | Voice Clone | - | | SCLN | Microsoft | βœ… | Improve Clone | - | | PPG perturbation | this project | βœ… | Improved noise immunity and de-timbre | - | | VAE perturbation | this project | βœ… | Improve sound quality | - | πŸ’—due to the use of data perturbation, it takes longer to train than other projects. ## Dataset preparation Necessary pre-processing: - 1 accompaniment separation - 2 band extension - 3 sound quality improvement - 4 cut audio, less than 30 seconds for whisperπŸ’— then put the dataset into the dataset_raw directory according to the following file structure ```shell dataset_raw β”œβ”€β”€β”€speaker0 β”‚ β”œβ”€β”€β”€000001.wav β”‚ β”œβ”€β”€β”€... β”‚ └───000xxx.wav └───speaker1 β”œβ”€β”€β”€000001.wav β”œβ”€β”€β”€... └───000xxx.wav ``` ## Install dependencies - 1 software dependency > apt update && sudo apt install ffmpeg > pip install -r requirements.txt - 2 download the Timbre Encoder: [Speaker-Encoder by @mueller91](https://drive.google.com/drive/folders/15oeBYf6Qn1edONkVLXe82MzdIi3O_9m3), put `best_model.pth.tar` into `speaker_pretrain/` - 3 download whisper model [multiple language medium model](https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt), Make sure to download `medium.pt`,put it into `whisper_pretrain/` - 4 whisper is built-in, do not install it additionally, it will conflict and report an error ## Data preprocessing - 1, set working directory: > export PYTHONPATH=$PWD - 2, re-sampling generate audio with a sampling rate of 16000Hz:./data_svc/waves-16k > python prepare/preprocess_a.py -w ./dataset_raw -o ./data_svc/waves-16k -s 16000 generate audio with a sampling rate of 32000Hz:./data_svc/waves-32k > python prepare/preprocess_a.py -w ./dataset_raw -o ./data_svc/waves-32k -s 32000 - 3, use 16K audio to extract pitch:f0_ceil=900, it needs to be modified according to the highest pitch of your data > python prepare/preprocess_f0.py -w data_svc/waves-16k/ -p data_svc/pitch or use next for low quality audio > python prepare/preprocess_f0_crepe.py -w data_svc/waves-16k/ -p data_svc/pitch - 4, use 16K audio to extract ppg > python prepare/preprocess_ppg.py -w data_svc/waves-16k/ -p data_svc/whisper - 5, use 16k audio to extract timbre code > python prepare/preprocess_speaker.py data_svc/waves-16k/ data_svc/speaker - 6, extract the average value of the timbre code for inference; it can also replace a single audio timbre in generating the training index, and use it as the unified timbre of the speaker for training > python prepare/preprocess_speaker_ave.py data_svc/speaker/ data_svc/singer - 7, use 32k audio to extract the linear spectrum > python prepare/preprocess_spec.py -w data_svc/waves-32k/ -s data_svc/specs - 8, use 32k audio to generate training index > python prepare/preprocess_train.py - 9, training file debugging > python prepare/preprocess_zzz.py ```shell data_svc/ └── waves-16k β”‚ └── speaker0 β”‚ β”‚ β”œβ”€β”€ 000001.wav β”‚ β”‚ └── 000xxx.wav β”‚ └── speaker1 β”‚ β”œβ”€β”€ 000001.wav β”‚ └── 000xxx.wav └── waves-32k β”‚ └── speaker0 β”‚ β”‚ β”œβ”€β”€ 000001.wav β”‚ β”‚ └── 000xxx.wav β”‚ └── speaker1 β”‚ β”œβ”€β”€ 000001.wav β”‚ └── 000xxx.wav └── pitch β”‚ └── speaker0 β”‚ β”‚ β”œβ”€β”€ 000001.pit.npy β”‚ β”‚ └── 000xxx.pit.npy β”‚ └── speaker1 β”‚ β”œβ”€β”€ 000001.pit.npy β”‚ └── 000xxx.pit.npy └── whisper β”‚ └── speaker0 β”‚ β”‚ β”œβ”€β”€ 000001.ppg.npy β”‚ β”‚ └── 000xxx.ppg.npy β”‚ └── speaker1 β”‚ β”œβ”€β”€ 000001.ppg.npy β”‚ └── 000xxx.ppg.npy └── speaker β”‚ └── speaker0 β”‚ β”‚ β”œβ”€β”€ 000001.spk.npy β”‚ β”‚ └── 000xxx.spk.npy β”‚ └── speaker1 β”‚ β”œβ”€β”€ 000001.spk.npy β”‚ └── 000xxx.spk.npy └── singer β”œβ”€β”€ speaker0.spk.npy └── speaker1.spk.npy ``` ## Train - 0, if fine-tuning based on the pre-trained model, you need to download the pre-trained model: sovits5.0_main_1500.pth > set pretrain: "./sovits5.0_main_1500.pth" in configs/base.yaml,and adjust the learning rate appropriately, eg 1e-5 - 1, set working directory > export PYTHONPATH=$PWD - 2, start training > python svc_trainer.py -c configs/base.yaml -n sovits5.0 - 3, resume training > python svc_trainer.py -c configs/base.yaml -n sovits5.0 -p chkpt/sovits5.0/***.pth - 4, view log > tensorboard --logdir logs/ ![sovits5 0_base](https://github.com/PlayVoice/so-vits-svc-5.0/assets/16432329/1628e775-5888-4eac-b173-a28dca978faa) ## Inference - 1, set working directory > export PYTHONPATH=$PWD - 2, export inference model: text encoder, Flow network, Decoder network > python svc_export.py --config configs/base.yaml --checkpoint_path chkpt/sovits5.0/***.pt - 3, use whisper to extract content encoding, without using one-click reasoning, in order to reduce GPU memory usage > python whisper/inference.py -w test.wav -p test.ppg.npy generate test.ppg.npy; if no ppg file is specified in the next step, generate it automatically - 4, extract the F0 parameter to the csv text format, open the csv file in Excel, and manually modify the wrong F0 according to Audition or SonicVisualiser > python pitch/inference.py -w test.wav -p test.csv - 5,specify parameters and infer > python svc_inference.py --config configs/base.yaml --model sovits5.0.pth --spk ./configs/singers/singer0001.npy --wave test.wav --ppg test.ppg.npy --pit test.csv when --ppg is specified, when the same audio is reasoned multiple times, it can avoid repeated extraction of audio content codes; if it is not specified, it will be automatically extracted; when --pit is specified, the manually tuned F0 parameter can be loaded; if not specified, it will be automatically extracted; generate files in the current directory:svc_out.wav | args |--config | --model | --spk | --wave | --ppg | --pit | --shift | | --- | --- | --- | --- | --- | --- | --- | --- | | name | config path | model path | speaker | wave input | wave ppg | wave pitch | pitch shift | ## Creat singer named by pure coincidence:average -> ave -> eva,eve(eva) represents conception and reproduction > python svc_eva.py ```python eva_conf = { './configs/singers/singer0022.npy': 0, './configs/singers/singer0030.npy': 0, './configs/singers/singer0047.npy': 0.5, './configs/singers/singer0051.npy': 0.5, } ``` the generated singer file is:eva.spk.npy πŸ’—both Flow and Decoder need to input timbres, and you can even input different timbre parameters to the two modules to create more unique timbres. ## Data set | Name | URL | | --- | --- | |KiSing |http://shijt.site/index.php/2021/05/16/kising-the-first-open-source-mandarin-singing-voice-synthesis-corpus/| |PopCS |https://github.com/MoonInTheRiver/DiffSinger/blob/master/resources/apply_form.md| |opencpop |https://wenet.org.cn/opencpop/download/| |Multi-Singer |https://github.com/Multi-Singer/Multi-Singer.github.io| |M4Singer |https://github.com/M4Singer/M4Singer/blob/master/apply_form.md| |CSD |https://zenodo.org/record/4785016#.YxqrTbaOMU4| |KSS |https://www.kaggle.com/datasets/bryanpark/korean-single-speaker-speech-dataset| |JVS MuSic |https://sites.google.com/site/shinnosuketakamichi/research-topics/jvs_music| |PJS |https://sites.google.com/site/shinnosuketakamichi/research-topics/pjs_corpus| |JUST Song |https://sites.google.com/site/shinnosuketakamichi/publication/jsut-song| |MUSDB18 |https://sigsep.github.io/datasets/musdb.html#musdb18-compressed-stems| |DSD100 |https://sigsep.github.io/datasets/dsd100.html| |Aishell-3 |http://www.aishelltech.com/aishell_3| |VCTK |https://datashare.ed.ac.uk/handle/10283/2651| ## Code sources and references https://github.com/facebookresearch/speech-resynthesis [paper](https://arxiv.org/abs/2104.00355) https://github.com/jaywalnut310/vits [paper](https://arxiv.org/abs/2106.06103) https://github.com/openai/whisper/ [paper](https://arxiv.org/abs/2212.04356) https://github.com/NVIDIA/BigVGAN [paper](https://arxiv.org/abs/2206.04658) https://github.com/mindslab-ai/univnet [paper](https://arxiv.org/abs/2106.07889) https://github.com/nii-yamagishilab/project-NN-Pytorch-scripts/tree/master/project/01-nsf https://github.com/brentspell/hifi-gan-bwe https://github.com/mozilla/TTS https://github.com/OlaWod/FreeVC [paper](https://arxiv.org/abs/2210.15418) [SNAC : Speaker-normalized Affine Coupling Layer in Flow-based Architecture for Zero-Shot Multi-Speaker Text-to-Speech](https://github.com/hcy71o/SNAC) [Adapter-Based Extension of Multi-Speaker Text-to-Speech Model for New Speakers](https://arxiv.org/abs/2211.00585) [AdaSpeech: Adaptive Text to Speech for Custom Voice](https://arxiv.org/pdf/2103.00993.pdf) [Cross-Speaker Prosody Transfer on Any Text for Expressive Speech Synthesis](https://github.com/ubisoft/ubisoft-laforge-daft-exprt) [Learn to Sing by Listening: Building Controllable Virtual Singer by Unsupervised Learning from Voice Recordings](https://arxiv.org/abs/2305.05401) [Adversarial Speaker Disentanglement Using Unannotated External Data for Self-supervised Representation Based Voice Conversion](https://arxiv.org/pdf/2305.09167.pdf) [Speaker normalization (GRL) for self-supervised speech emotion recognition](https://arxiv.org/abs/2202.01252) ## Method of Preventing Timbre Leakage Based on Data Perturbation https://github.com/auspicious3000/contentvec/blob/main/contentvec/data/audio/audio_utils_1.py https://github.com/revsic/torch-nansy/blob/main/utils/augment/praat.py https://github.com/revsic/torch-nansy/blob/main/utils/augment/peq.py https://github.com/biggytruck/SpeechSplit2/blob/main/utils.py https://github.com/OlaWod/FreeVC/blob/main/preprocess_sr.py ## Contributors --- license: afl-3.0 ---