--- tasks: - voice-activity-detection domain: - audio model-type: - VAD model frameworks: - pytorch backbone: - fsmn metrics: - f1_score license: Apache License 2.0 language: - cn tags: - FunASR - FSMN - Alibaba - Online datasets: train: - 20,000 hour industrial Mandarin task test: - 20,000 hour industrial Mandarin task widgets: - task: voice-activity-detection model_revision: v2.0.4 inputs: - type: audio name: input title: 音频 examples: - name: 1 title: 示例1 inputs: - name: input data: git://example/vad_example.wav inferencespec: cpu: 1 #CPU数量 memory: 4096 --- # FSMN-Monophone VAD 模型介绍 [//]: # (FSMN-Monophone VAD 模型) ## Highlight - 16k中文通用VAD模型:可用于检测长语音片段中有效语音的起止时间点。 - 基于[Paraformer-large长音频模型](https://www.modelscope.cn/models/damo/speech_paraformer-large-vad-punc_asr_nat-zh-cn-16k-common-vocab8404-pytorch/summary)场景的使用 - 基于[FunASR框架](https://github.com/alibaba-damo-academy/FunASR),可进行ASR,VAD,[中文标点](https://www.modelscope.cn/models/damo/punc_ct-transformer_zh-cn-common-vocab272727-pytorch/summary)的自由组合 - 基于音频数据的有效语音片段起止时间点检测 ## [FunASR开源项目介绍](https://github.com/alibaba-damo-academy/FunASR) [FunASR](https://github.com/alibaba-damo-academy/FunASR)希望在语音识别的学术研究和工业应用之间架起一座桥梁。通过发布工业级语音识别模型的训练和微调,研究人员和开发人员可以更方便地进行语音识别模型的研究和生产,并推动语音识别生态的发展。让语音识别更有趣! [**github仓库**](https://github.com/alibaba-damo-academy/FunASR) | [**最新动态**](https://github.com/alibaba-damo-academy/FunASR#whats-new) | [**环境安装**](https://github.com/alibaba-damo-academy/FunASR#installation) | [**服务部署**](https://www.funasr.com) | [**模型库**](https://github.com/alibaba-damo-academy/FunASR/tree/main/model_zoo) | [**联系我们**](https://github.com/alibaba-damo-academy/FunASR#contact) ## 模型原理介绍 FSMN-Monophone VAD是达摩院语音团队提出的高效语音端点检测模型,用于检测输入音频中有效语音的起止时间点信息,并将检测出来的有效音频片段输入识别引擎进行识别,减少无效语音带来的识别错误。
FSMN-Monophone VAD模型结构如上图所示:模型结构层面,FSMN模型结构建模时可考虑上下文信息,训练和推理速度快,且时延可控;同时根据VAD模型size以及低时延的要求,对FSMN的网络结构、右看帧数进行了适配。在建模单元层面,speech信息比较丰富,仅用单类来表征学习能力有限,我们将单一speech类升级为Monophone。建模单元细分,可以避免参数平均,抽象学习能力增强,区分性更好。 ## 基于ModelScope进行推理 - 推理支持音频格式如下: - wav文件路径,例如:data/test/audios/vad_example.wav - wav文件url,例如:https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav - wav二进制数据,格式bytes,例如:用户直接从文件里读出bytes数据或者是麦克风录出bytes数据。 - 已解析的audio音频,例如:audio, rate = soundfile.read("vad_example_zh.wav"),类型为numpy.ndarray或者torch.Tensor。 - wav.scp文件,需符合如下要求: ```sh cat wav.scp vad_example1 data/test/audios/vad_example1.wav vad_example2 data/test/audios/vad_example2.wav ... ``` - 若输入格式wav文件url,api调用方式可参考如下范例: ```python from modelscope.pipelines import pipeline from modelscope.utils.constant import Tasks inference_pipeline = pipeline( task=Tasks.voice_activity_detection, model='iic/speech_fsmn_vad_zh-cn-16k-common-pytorch', model_revision="v2.0.4", ) segments_result = inference_pipeline(input='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav') print(segments_result) ``` - 输入音频为pcm格式,调用api时需要传入音频采样率参数fs,例如: ```python segments_result = inference_pipeline(input='https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.pcm', fs=16000) ``` - 若输入格式为文件wav.scp(注:文件名需要以.scp结尾),可添加 output_dir 参数将识别结果写入文件中,参考示例如下: ```python inference_pipeline(input="wav.scp", output_dir='./output_dir') ``` 识别结果输出路径结构如下: ```sh tree output_dir/ output_dir/ └── 1best_recog └── text 1 directory, 1 files ``` text:VAD检测语音起止时间点结果文件(单位:ms) - 若输入音频为已解析的audio音频,api调用方式可参考如下范例: ```python import soundfile waveform, sample_rate = soundfile.read("vad_example_zh.wav") segments_result = inference_pipeline(input=waveform) print(segments_result) ``` - VAD常用参数调整说明(参考:vad.yaml文件): - max_end_silence_time:尾部连续检测到多长时间静音进行尾点判停,参数范围500ms~6000ms,默认值800ms(该值过低容易出现语音提前截断的情况)。 - speech_noise_thres:speech的得分减去noise的得分大于此值则判断为speech,参数范围:(-1,1) - 取值越趋于-1,噪音被误判定为语音的概率越大,FA越高 - 取值越趋于+1,语音被误判定为噪音的概率越大,Pmiss越高 - 通常情况下,该值会根据当前模型在长语音测试集上的效果取balance ## 基于FunASR进行推理 下面为快速上手教程,测试音频([中文](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/vad_example.wav),[英文](https://isv-data.oss-cn-hangzhou.aliyuncs.com/ics/MaaS/ASR/test_audio/asr_example_en.wav)) ### 可执行命令行 在命令行终端执行: ```shell funasr ++model=paraformer-zh ++vad_model="fsmn-vad" ++punc_model="ct-punc" ++input=vad_example.wav ``` 注:支持单条音频文件识别,也支持文件列表,列表为kaldi风格wav.scp:`wav_id wav_path` ### python示例 #### 非实时语音识别 ```python from funasr import AutoModel # paraformer-zh is a multi-functional asr model # use vad, punc, spk or not as you need model = AutoModel(model="paraformer-zh", model_revision="v2.0.4", vad_model="fsmn-vad", vad_model_revision="v2.0.4", punc_model="ct-punc-c", punc_model_revision="v2.0.4", # spk_model="cam++", spk_model_revision="v2.0.2", ) res = model.generate(input=f"{model.model_path}/example/asr_example.wav", batch_size_s=300, hotword='魔搭') print(res) ``` 注:`model_hub`:表示模型仓库,`ms`为选择modelscope下载,`hf`为选择huggingface下载。 #### 实时语音识别 ```python from funasr import AutoModel chunk_size = [0, 10, 5] #[0, 10, 5] 600ms, [0, 8, 4] 480ms encoder_chunk_look_back = 4 #number of chunks to lookback for encoder self-attention decoder_chunk_look_back = 1 #number of encoder chunks to lookback for decoder cross-attention model = AutoModel(model="paraformer-zh-streaming", model_revision="v2.0.4") import soundfile import os wav_file = os.path.join(model.model_path, "example/asr_example.wav") speech, sample_rate = soundfile.read(wav_file) chunk_stride = chunk_size[1] * 960 # 600ms cache = {} total_chunk_num = int(len((speech)-1)/chunk_stride+1) for i in range(total_chunk_num): speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride] is_final = i == total_chunk_num - 1 res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size, encoder_chunk_look_back=encoder_chunk_look_back, decoder_chunk_look_back=decoder_chunk_look_back) print(res) ``` 注:`chunk_size`为流式延时配置,`[0,10,5]`表示上屏实时出字粒度为`10*60=600ms`,未来信息为`5*60=300ms`。每次推理输入为`600ms`(采样点数为`16000*0.6=960`),输出为对应文字,最后一个语音片段输入需要设置`is_final=True`来强制输出最后一个字。 #### 语音端点检测(非实时) ```python from funasr import AutoModel model = AutoModel(model="fsmn-vad", model_revision="v2.0.4") wav_file = f"{model.model_path}/example/asr_example.wav" res = model.generate(input=wav_file) print(res) ``` #### 语音端点检测(实时) ```python from funasr import AutoModel chunk_size = 200 # ms model = AutoModel(model="fsmn-vad", model_revision="v2.0.4") import soundfile wav_file = f"{model.model_path}/example/vad_example.wav" speech, sample_rate = soundfile.read(wav_file) chunk_stride = int(chunk_size * sample_rate / 1000) cache = {} total_chunk_num = int(len((speech)-1)/chunk_stride+1) for i in range(total_chunk_num): speech_chunk = speech[i*chunk_stride:(i+1)*chunk_stride] is_final = i == total_chunk_num - 1 res = model.generate(input=speech_chunk, cache=cache, is_final=is_final, chunk_size=chunk_size) if len(res[0]["value"]): print(res) ``` #### 标点恢复 ```python from funasr import AutoModel model = AutoModel(model="ct-punc", model_revision="v2.0.4") res = model.generate(input="那今天的会就到这里吧 happy new year 明年见") print(res) ``` #### 时间戳预测 ```python from funasr import AutoModel model = AutoModel(model="fa-zh", model_revision="v2.0.4") wav_file = f"{model.model_path}/example/asr_example.wav" text_file = f"{model.model_path}/example/text.txt" res = model.generate(input=(wav_file, text_file), data_type=("sound", "text")) print(res) ``` 更多详细用法([示例](https://github.com/alibaba-damo-academy/FunASR/tree/main/examples/industrial_data_pretraining)) ## 微调 详细用法([示例](https://github.com/alibaba-damo-academy/FunASR/tree/main/examples/industrial_data_pretraining)) ## 使用方式以及适用范围 运行范围 - 支持Linux-x86_64、Mac和Windows运行。 使用方式 - 直接推理:可以直接对长语音数据进行计算,有效语音片段的起止时间点信息(单位:ms)。 ## 相关论文以及引用信息 ```BibTeX @inproceedings{zhang2018deep, title={Deep-FSMN for large vocabulary continuous speech recognition}, author={Zhang, Shiliang and Lei, Ming and Yan, Zhijie and Dai, Lirong}, booktitle={2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)}, pages={5869--5873}, year={2018}, organization={IEEE} } ```