--- language: - eu license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer model-index: - name: Whisper Small Basque results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: mozilla-foundation/common_voice_13_0 eu type: mozilla-foundation/common_voice_13_0 config: eu split: test args: eu metrics: - name: Wer type: wer value: 14.119648426424725 --- # Whisper Small Basque This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 eu dataset. It achieves the following results on the evaluation set: - Loss: 0.2376 - Wer: 14.1196 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-06 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.443 | 0.06 | 500 | 0.5037 | 37.4296 | | 0.4196 | 0.12 | 1000 | 0.4010 | 28.9137 | | 0.2823 | 0.19 | 1500 | 0.3453 | 24.6851 | | 0.2551 | 0.25 | 2000 | 0.3164 | 22.5789 | | 0.206 | 0.31 | 2500 | 0.2902 | 19.7922 | | 0.2327 | 0.38 | 3000 | 0.2707 | 18.9356 | | 0.1416 | 1.03 | 3500 | 0.2566 | 17.6921 | | 0.0998 | 1.09 | 4000 | 0.2551 | 16.8213 | | 0.095 | 1.15 | 4500 | 0.2511 | 16.3899 | | 0.0971 | 1.21 | 5000 | 0.2415 | 15.5393 | | 0.0964 | 1.28 | 5500 | 0.2336 | 15.1707 | | 0.072 | 1.34 | 6000 | 0.2353 | 14.7596 | | 0.0658 | 1.4 | 6500 | 0.2340 | 14.6766 | | 0.033 | 2.05 | 7000 | 0.2349 | 14.3768 | | 0.0288 | 2.11 | 7500 | 0.2371 | 14.1865 | | 0.0352 | 2.18 | 8000 | 0.2376 | 14.1196 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.1+cu117 - Datasets 2.8.1.dev0 - Tokenizers 0.13.2