|
--- |
|
language: |
|
- eu |
|
license: apache-2.0 |
|
tags: |
|
- whisper-event |
|
- generated_from_trainer |
|
datasets: |
|
- mozilla-foundation/common_voice_13_0 |
|
metrics: |
|
- wer |
|
model-index: |
|
- name: Whisper Small Basque |
|
results: |
|
- task: |
|
name: Automatic Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: mozilla-foundation/common_voice_13_0 eu |
|
type: mozilla-foundation/common_voice_13_0 |
|
config: eu |
|
split: test |
|
args: eu |
|
metrics: |
|
- name: Wer |
|
type: wer |
|
value: 14.119648426424725 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Whisper Small Basque |
|
|
|
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the mozilla-foundation/common_voice_13_0 eu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2376 |
|
- Wer: 14.1196 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-06 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- training_steps: 8000 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Wer | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:| |
|
| 0.443 | 0.06 | 500 | 0.5037 | 37.4296 | |
|
| 0.4196 | 0.12 | 1000 | 0.4010 | 28.9137 | |
|
| 0.2823 | 0.19 | 1500 | 0.3453 | 24.6851 | |
|
| 0.2551 | 0.25 | 2000 | 0.3164 | 22.5789 | |
|
| 0.206 | 0.31 | 2500 | 0.2902 | 19.7922 | |
|
| 0.2327 | 0.38 | 3000 | 0.2707 | 18.9356 | |
|
| 0.1416 | 1.03 | 3500 | 0.2566 | 17.6921 | |
|
| 0.0998 | 1.09 | 4000 | 0.2551 | 16.8213 | |
|
| 0.095 | 1.15 | 4500 | 0.2511 | 16.3899 | |
|
| 0.0971 | 1.21 | 5000 | 0.2415 | 15.5393 | |
|
| 0.0964 | 1.28 | 5500 | 0.2336 | 15.1707 | |
|
| 0.072 | 1.34 | 6000 | 0.2353 | 14.7596 | |
|
| 0.0658 | 1.4 | 6500 | 0.2340 | 14.6766 | |
|
| 0.033 | 2.05 | 7000 | 0.2349 | 14.3768 | |
|
| 0.0288 | 2.11 | 7500 | 0.2371 | 14.1865 | |
|
| 0.0352 | 2.18 | 8000 | 0.2376 | 14.1196 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.26.0.dev0 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.8.1.dev0 |
|
- Tokenizers 0.13.2 |
|
|