--- language: - eo license: apache-2.0 tags: - automatic-speech-recognition - mozilla-foundation/common_voice_13_0 - generated_from_trainer datasets: - common_voice_13_0 metrics: - wer model-index: - name: wav2vec2-common_voice_13_0-eo-10_1 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - EO type: common_voice_13_0 config: eo split: validation args: 'Config: eo, Training split: train, Eval split: validation' metrics: - name: Wer type: wer value: 0.05342994850125446 --- # wav2vec2-common_voice_13_0-eo-10_1 This model is a fine-tuned version of [xekri/wav2vec2-common_voice_13_0-eo-10](https://huggingface.co/xekri/wav2vec2-common_voice_13_0-eo-10) on the MOZILLA-FOUNDATION/COMMON_VOICE_13_0 - EO dataset. It achieves the following results on the evaluation set: - Loss: 0.0391 - Cer: 0.0098 - Wer: 0.0534 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Cer | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 0.1142 | 0.22 | 1000 | 0.0483 | 0.0126 | 0.0707 | | 0.1049 | 0.44 | 2000 | 0.0474 | 0.0123 | 0.0675 | | 0.0982 | 0.67 | 3000 | 0.0471 | 0.0120 | 0.0664 | | 0.092 | 0.89 | 4000 | 0.0459 | 0.0117 | 0.0640 | | 0.0847 | 1.11 | 5000 | 0.0459 | 0.0115 | 0.0631 | | 0.0837 | 1.33 | 6000 | 0.0453 | 0.0113 | 0.0624 | | 0.0803 | 1.56 | 7000 | 0.0443 | 0.0109 | 0.0598 | | 0.0826 | 1.78 | 8000 | 0.0441 | 0.0110 | 0.0604 | | 0.0809 | 2.0 | 9000 | 0.0437 | 0.0110 | 0.0605 | | 0.0728 | 2.22 | 10000 | 0.0451 | 0.0109 | 0.0597 | | 0.0707 | 2.45 | 11000 | 0.0444 | 0.0108 | 0.0591 | | 0.0698 | 2.67 | 12000 | 0.0442 | 0.0105 | 0.0576 | | 0.0981 | 2.89 | 13000 | 0.0411 | 0.0104 | 0.0572 | | 0.0928 | 3.11 | 14000 | 0.0413 | 0.0102 | 0.0561 | | 0.0927 | 3.34 | 15000 | 0.0410 | 0.0102 | 0.0565 | | 0.0886 | 3.56 | 16000 | 0.0402 | 0.0102 | 0.0558 | | 0.091 | 3.78 | 17000 | 0.0400 | 0.0101 | 0.0553 | | 0.0888 | 4.0 | 18000 | 0.0398 | 0.0100 | 0.0546 | | 0.0885 | 4.23 | 19000 | 0.0395 | 0.0099 | 0.0542 | | 0.0869 | 4.45 | 20000 | 0.0394 | 0.0099 | 0.0540 | | 0.0844 | 4.67 | 21000 | 0.0393 | 0.0098 | 0.0539 | | 0.0882 | 4.89 | 22000 | 0.0391 | 0.0098 | 0.0537 | ### Framework versions - Transformers 4.29.2 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3