--- tags: - trl - dpo - generated_from_trainer model-index: - name: dpo-selective-buffer-safeipo results: [] --- # dpo-selective-buffer-safeipo This model was trained from scratch on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3423 - Rewards/chosen: -1.0061 - Rewards/rejected: -1.3040 - Rewards/accuracies: 0.7314 - Rewards/margins: 0.2980 - Rewards/safe Rewards: -0.9953 - Rewards/unsafe Rewards: -1.0113 - Logps/rejected: -222.8744 - Logps/chosen: -231.0451 - Logits/rejected: -0.6287 - Logits/chosen: -1.0992 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-07 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Rewards/safe Rewards | Rewards/unsafe Rewards | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | |:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------------:|:----------------------:|:--------------:|:------------:|:---------------:|:-------------:| | 1.0274 | 0.27 | 500 | 0.3731 | -1.0192 | -1.3005 | 0.7075 | 0.2813 | -1.0089 | -1.0281 | -222.5216 | -232.3561 | -0.9855 | -1.4616 | | 0.9569 | 0.54 | 1000 | 0.3497 | -0.9136 | -1.2026 | 0.7210 | 0.2890 | -0.9006 | -0.9166 | -212.7308 | -221.7959 | -0.5821 | -1.0712 | | 0.8619 | 0.81 | 1500 | 0.3429 | -0.9136 | -1.1772 | 0.7269 | 0.2635 | -0.9047 | -0.9192 | -210.1883 | -221.8018 | -0.7005 | -1.1466 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.14.6 - Tokenizers 0.15.0